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ABSTRACT 

Eddy current nondestructive evaluation (NDE) of airframe structures involves the 

detection of electromagnetic field irregularities due to non-conducting inhomogeneities in an 

electrically conducting material.  Usually, the eddy current NDE problem can be formulated 

by the boundary integral equations (BIE) and discretized into matrix equations by the method 

of moments (MoM) or the boundary element method (BEM).  The fast multipole method 

(FMM) is a well-established and effective method for accelerating numerical solutions of the 

matrix equations.  Accelerated by the FMM, the BIE method can now solve large-scale 

electromagnetic wave propagation and diffusion problems.  The traditional BIE method 

requires O(N2) operations to compute the system of equations and another O(N3) operations 

to solve the system using direct solvers, with N being the number of unknowns;  in contrast, 

the BIE method accelerated by the two-level FMM can potentially reduce the operations and 

memory requirement to O(N3/2).  Moreover, several approaches have been proposed for the 

field calculation in the presence of flaws in three dimensional NDE; however, seldom work 

has been done in applying efficient methods to seek rapid solution in eddy current NDE 

simulation. 

As elaborated in the dissertation, we introduce a fast multipole BIE method for 

two-dimensional diffusive scalar problem and an efficient BIE method for three-dimensional 

eddy current NDE.  Firstly, we work with the two-dimensional Helmholtz equation with a 

complex wave number for non-trivial boundary geometry.  We describe the FMM 

acceleration procedure of the BIE method and its features briefly, explaining that the FMM is 

not only efficient in meshing complicated geometries, accurate for solving singular fields or 
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fields in finite domains, but also practical and often superior to other methods in solving 

large-scale problems.  Subsequently, computational tests of the numerical FMM solutions 

against the conventional BIE results and their complexity are presented.  Secondly, for the 

eddy current NDE, a BIE method in three dimensions has been demonstrated.  The eddy 

current problem is formulated by the BIE and discretized into matrix equations by the 

method of moments (MoM) or the boundary element method (BEM).  In our 

implementation of the Stratton-Chu formulation for the conductive medium, the equivalent 

electric and magnetic surface currents are expanded in terms of Rao-Wilton-Glisson (RWG) 

vector basis function while the normal component of magnetic field is expanded in terms of 

the pulse basis function.  Also, a low frequency approximation is applied in the external 

medium, that is, free space in our case.  Computational tests are presented to demonstrate 

the accuracy and capability of the three-dimensional BIE method with a complex wave 

number for arbitrarily shaped objects described by a number of triangular patches.  The 

results of this research set the stage for the efficient BIE method to be applied in more 

practical eddy current NDE simulation and be embedded with the FMM in the future. 
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CHAPTER 1.  INTRODUCTION 

Eddy current nondestructive evaluation (NDE) involves the detection of 

electromagnetic field irregularities due to non-conducting inhomogeneities in an electrically 

conducting material [1], which often needs to treat with complicated geometrical features.  

Typically, the primary eddy current field is produced by sinusoidal excitation of a small 

induction coil near the surface of the component to be inspected.  When scanning the coil 

over the surface, the flaw detection is achieved by searching for coil impedance changes that 

imply flaw-induced perturbation of the eddy current density [2], as shown in Figure 1.1.  

Accordingly, computer simulation of the flaw detection process includes calculation of the 

electromagnetic field distribution around the flaw and the response of the detection system to 

this perturbed distribution.  There exists a reciprocity theorem originally proposed by Rumsey 

[3], which allows us to express the flaw response function for the exciter coil-sensor system.  

Through this theorem, the complicated problem of calculating the receiver response is reduced 

to the calculation of fields produced by an induction coil in an unflawed material and 

evaluation of the flaw response surface integral.  Fortunately, for a half-space and certain 

simple geometries, these fields can be calculated by means of existing analytical expressions [4, 

5].  Also, several approaches have been proposed for the field calculation in the presence of 

flaws, which include the simple point flaw model [6], finite element model [7] and boundary 

element model [8, 9]; however, seldom work has been done in applying efficient methods to 

seek rapid solution in eddy current NDE simulation, although applications of fast algorithms 

have become a hot topic in computational electromagnetic society for more than twenty years. 
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The boundary integral equations (BIE) method is a numerical computational method of 

solving linear partial differential equations which have been formulated as integral equations.  

It can be applied in many areas of engineering and science including fluid mechanics, acoustics, 

electromagnetics, and fracture mechanics.  In electromagnetics, the more traditional term 

“method of moments” is often, though not always, synonymous with BIE method.  The fast 

multipole method (FMM) [10-13] was originally proposed by Rokhlin and Greengard to 

evaluate particle simulations and to solve static integral equation rapidly.  In 1990s, the FMM 

was extended by Rokhlin to solve acoustic wave scattering problems [14] and then to solve 

electromagnetic scattering problems by many researchers in both two dimensions [15-19] and 

three dimensions [20, 21].  Till now, the FMM has been developed into a well-established and 

effective scheme for accelerating numerical solutions of boundary integral equations, due to 

ferrite core
coil

part surface crack

Probe

Part

edge

Figure 1.1.  A diagram of conceptual eddy current inspection system. 
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which we propose to extend the FMM into eddy current NDE field.  The conventional BIE 

method generates a dense asymmetric matrix; therefore, it requires O(N2) operations to 

compute the system of equations and another O(N3) operations to solve the system using direct 

solvers, with N being the number of unknowns.  In contrast, the BIE method accelerated by 

the two-level FMM can potentially reduce the operations and memory requirement to O(N3/2) 

[22].  With a multilevel fast multipole algorithm, it is further reduced to O(NlogN) [23, 24].  

Accelerated by the FMM, the BIE method can now solve large-scale electromagnetic wave 

propagation and diffusion problems with up to a million unknowns on a personal computer [25, 

26].  Certain eddy-current modeling problems such as NDE of airframe structures may 

involve complicated geometrical features including cracks, fasteners, sharp corners/edges, 

multi-layered structures, complex ferrite-cored probes, etc.  The FMM accelerated BIE 

method has a significant potential to solve such large-scale problems efficiently. 

In this dissertation, we introduce a fast multipole BIE method for two-dimensional 

diffusive scalar problem and an efficient BIE method for three-dimensional eddy current NDE.  

Firstly, we work with the two-dimensional Helmholtz equation with a complex wave number 

for non-trivial boundary geometry.  We describe the FMM acceleration procedure of the BIE 

method and its features briefly, explaining that the FMM is not only efficient in meshing 

complicated geometries, accurate for solving singular fields or fields in finite domains, but also 

practical and often superior to other methods in solving large-scale problems.  Subsequently, 

computational tests of the numerical FMM solutions against the conventional BIE results and 

their complexity are presented.  Secondly, for the eddy current NDE, a BIE method in three 

dimensions has been demonstrated.  The eddy current problem is formulated by the BIE and 

discretized into matrix equations by the method of moments (MoM) [27] or the boundary 



www.manaraa.com

  

 

4 

element method (BEM).  In our implementation of the Stratton-Chu formulation [28] for the 

conductive medium, the equivalent electric and magnetic surface currents are expanded in 

terms of Rao-Wilton-Glisson (RWG) vector basis function [29] while the normal component of 

magnetic field is expanded in terms of the pulse basis function.  Also, a low frequency 

approximation is applied in the external medium, that is, free space in our case.  

Computational tests are presented to demonstrate the accuracy and capability of the 

three-dimensional BIE method with a complex wave number for arbitrarily shaped objects 

described by a number of triangular patches.  The results of this research set the stage for the 

efficient BIE method to be applied in more practical eddy current NDE simulation and be 

embedded with the FMM in the future. 

As for this dissertation, in Chapter 2, integral equations and the method of moments are 

briefly introduced.  This chapter also includes Rao-Wilson-Glisson (RWG) basis function and 

its projection error analysis.  In Chapter 3, the procedure of the FMM accelerated BIE method 

in two dimensions is demonstrated in detail.  This method is not only efficient in meshing 

complicated geometries, accurate for solving singular fields or fields in finite domains, but also 

practical and often superior to other methods in solving large-scale problems.  Computational 

tests of the numerical FMM solutions against the conventional BIE results are presented for the 

two-dimensional Helmholtz equation with a complex wave number.  In Chapter 4, the 

implementation of Stratton-Chu formulation in three dimensions for the conductive medium is 

introduced, in which the induced electric and magnetic surface currents are expanded in terms 

of the RWG vector basis function and the normal component of magnetic field is expanded in 

terms of pulse basis function.  In Chapter 5, computational tests are presented to demonstrate 

the accuracy and capability of the BIE method with a complex wave number for 
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three-dimensional objects described by a number of triangular patches.  The agreement 

between numerical results and those from theory and/or experiment is reasonably good in both 

cases of near field distribution and impedance variation, which also give us confidence that our 

numerical codes can successfully simulate eddy current NDE for arbitrary shape conductive 

objects interacted with coils in NDE application. 
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CHAPTER 2.  INTEGRAL EQUATION AND THE METHOD OF 

MOMENTS 

The method of moments (MoM), widely used in computational electromagnetics due to 

the pioneer work of Roger Harrington in 1968 [27], was originally popular for structural 

analysis in many areas of engineering and science and has since become common in 

computational electromagnetic analysis.  The MoM is a numerical computational method of 

solving linear partial differential equations which have been formulated as integral equations 

(i.e. in boundary integral form).  In the computation process, the MoM reduces an integral 

equation into a system of linear equations, which are solved to determine parameters of interest.  

After the integral equation has been derived, there are four steps in the implementation of the 

MoM, which are as follows: 1) expansion of the unknown function using basis or expansion 

functions, 2) evaluation of the integral equation using weighting or testing functions, 3) 

evaluation of the moment matrix elements, 4) and solving the matrix equation and obtaining 

the parameters of interest.  The integral equation and each of the necessary steps is now 

discussed in detail. 

2.1  Integral Equation 

Usually, the most difficult aspect of implementing the MoM is to derive the associated 

integral equation.  The integral equation is given as 

( ) ( , ) ( ) ( )
b

a

Lu x K x x u x dx f x′ ′ ′= =∫                          (2.1) 

where L is an operator, f is the known excitation, u is the response, and K is called the kernel.  

In general, the operator L may be differential, integral, or integro-differential. Most integral 
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equations do not have a closed form solution.  However, they can often be discretized and 

solved on a digital computer.  Proof of the existence of the solution to an integral equation by 

discretization was first presented by Fredholm [30] in 1903.  The purpose of the numerical 

solution is to determine numerical approximation of the unknown function, u. For the 

formulations presented here, the operator is a surface or volume integral.  If the limits on the 

integration domain are fixed, such as in equation (2.1) then the integral equation is said to be a 

Fredholm Equation.  Generally, there are three different kinds of Fredholm equations:  

Fredholm first kind 

)()( xfxLu =                                (2.2) 

Fredholm second kind  

)()()( xfxuxLu =+                            (2.3) 

Fredholm third kind 

)()()()( xfxuxaxLu =+                        (2.4) 

As is done in the MoM, Fredholm equations are often solved by replacing the integral 

equation with a linear system and solving the system.  The accuracy of numerically evaluating 

the integral depends on the numerical method employed and the number of quadrature points 

used.  For electromagnetic applications, we can have both scalar and vector integral 

equations. 

2.2  Method of Moments 

The integral equation may be regarded as an exact solution of the governing partial 

differential equation.  The MoM attempts to use the given boundary conditions to fit 

boundary values into the integral equation, rather than values throughout the space defined by a 
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partial differential equation.  Once this is done, in the post-processing stage, the integral 

equation can then be used again to calculate numerically the solution directly at any desired 

point in the interior of the solution domain.   

To be specific, when the MoM is applied to the integral equation (2.1), the first step is 

to expand the unknown function u(x), using basis (or expansion) functions bn(x) 

∑
=

≈
N

n
nn xbuxu

1

)()(                              (2.5) 

where un are unknown coefficients to be solved.  The integral equation is now expressed as a 

summation of integral equations for basis functions 

1
( ) ( ) ( )

N

n n
n

Lu x u Lb x f x
=

≈ =∑                        (2.6) 

The second step is to discretize the integral equation using weighting or testing 

functions tm(x). 

1
( ) ( ) ( ) ( ) ( ) ( ) 1, 2,...,

N

m m n n m
n

dxt x Lu x dxt x u Lb x dxt x f x m N
=

= = =∑∫ ∫ ∫         (2.7) 

The result is a matrix equation, which can be expressed as 

[ ] [ ]TN
T

N ffffuuuufAu ,,,,,, 2121 …… ===                    (2.8) 

Once the problem has been transformed to a matrix equation, the third step in 

implementing the method of moments is to evaluate the moment matrix elements. 

∫= )()( xfxdxtf mm                               (2.9) 

∫= )()( xLbxdxtA nmmn                            (2.10) 
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The fourth and final step in the MoM is to solve the matrix equation for the unknown 

function and determine the remaining parameters of interest.  The matrix equation is solved 

using Gaussian elimination, the lower-upper decomposition (LUD), or an iterative solver such 

as conjugate gradient (CG) method, the bi-conjugate gradient (BICG) method, or generalized 

minimal residual method (GMRES). 

The Galerkin’s method sets the testing functions the same as the basis functions. 

Resulting in 

∫= )()( xfxdxbf mm                             (2.11) 

∫= )()( xLbxdxbA nmmn                          (2.12) 

The method of moments is often more efficient than other methods, including finite 

elements, in terms of computational resources for problems where there is a small 

surface-to-volume ratio. Conceptually, it works by constructing a "mesh" over the modeled 

surface.  However, for many problems MoM is significantly less efficient than 

volume-discretisation methods (finite element method, finite difference method, finite volume 

method).  MoM formulations typically give rise to fully populated matrices.  This means that 

the storage requirements and computational time will tend to grow according to the square of 

the problem size.  By contrast, finite element matrices are typically banded (elements are only 

locally connected) and the storage requirements for the system matrices typically grow quite 

linearly with the problem size.  Compression techniques (e.g. multi-pole expansions or 

adaptive cross approximation/hierarchical matrices) can be used to ameliorate these problems, 
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though at the cost of added complexity and with a success-rate that depends heavily on the 

nature of the problem being solved and the geometry involved. 

2.3  Surface Integral Equation for Scattering from Homogeneous 

Objects 

Much attention has been given to the development of integral formulations to solve 

interactions of electromagnetic waves with homogeneous bodies [31-37].   Harrington [32] 

introduced a general formulation allowing for combination constants.  Of the various 

formulations this allows, the Müller [31] and PMCHWT [36] formulations are most commonly 

used.  The Müller formulation has been recognized for its use in evaluating scattering from 

low contrast media.  The PMCHWT formulation was first referred to as such by Mautz and 

Harrington in [36] from the initials of Poggio and Müller [33], Chang and Harrington [34], and 

Wu and Tsai [35].  These two formulations have been compared by Harrington.  However, a 

complete comparison has yet to be presented for other combinations.  In this section, the 

surface integral equation is given and two new formulations are presented and compared to the 

well-known Müller and PMCHWT formulations [38].  The integral formulations can be 

discretized to matrix equations using the method of moments. 

Given a homogeneous dielectric object, which is bounded by S, using either the 

equivalence principle or the vector Green's theorem, one can formulate a set of four integral 

equations to calculate the electric and magnetic fields E and H in terms of equivalent electric 

and magnetic currents J and M on the surface of the object [32, 37], as shown in Figure 2.1, 

where one is for the material outside the object (medium 1) and the other is for the material 

inside the object (medium 2) [32]. 
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( ) ( )
( ) ( )

1 2

1 2

ˆ ˆ ˆ, , 0
ˆ ˆ ˆ, , 0

inc

inc

n n n
n n n

− +

− +

× = − × × =
× = − × × =

E J M E E J M
H J M H H J M

                 (2.13) 

where ( ),inc incE H  denote the incident fields when medium 2 is the same as medium 1, the 

subscript 1 or 2 refers to medium 1 or medium 2, and the superscripts + and - denote the 

tangential components evaluated on S+ or S-, respectively. 

 

 

 

 

 

 

 

 

The electromagnetic fields are related to the equivalent currents by 

( )

( )

1 ˆ, ( ) ( )
2

1 1 ˆ, ( ) ( )
2

j j j j

j j j
j

n

n

η

η

±

±

= + ± ×

= − ×

E J M L J K M M

H J M L M K J J∓
                         (2.14) 

where and 1,2j j j jη μ ε= = .  These two equations also can be confirmed using the duality, 

, , 1/ , ,η η→ →− → → →−J M M J E H H E  

The two operators L and K are defined as [37, 38] 

        2

1( ) ( ) ( ) ( , )j j j
jS

ik G dS
k

⎡ ⎤
′ ′ ′ ′ ′= + ∇∇ ⋅⎢ ⎥

⎢ ⎥⎣ ⎦
∫L X X r X r r r                   (2.15) 

Medium 1 
ε1, μ1 
E1, H1 

V 

S 

Medium 2 
ε2, μ2  

E2, H2 

n̂

J, M 

Figure 2.1.  A scattering body in the presence of an impressed field produced by equivalent electric and 
magnetic currents J and M. 
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. .( ) ( ) ( , )P Vj j
S

G dS′ ′ ′= ×∇∫K X X r r r                               (2.16) 

where , 1,2i i ik jω ε μ= = , and P.V. stands for the Cauchy principal value of the finite integral. 

Also, the Green’s function is given as  

||4
),(

||

rr
rr

rr

′−
=′

′−−

π

jkeG                                        (2.17) 

Substituting (2.14) to (2.16) into (2.13) yields 

1 1 1

2 2 2

1 1
1

2 2
2

1( ) ( )
2

1( ) ( ) 0
2

1 1( ) ( )
2

1 1( ) ( ) 0
2

inc

inc

η

η

η

η

× × ×

× ×

× × ×

× ×

− − − =

− − + =

− + =

− − =

L J K M M E

L J K M M

K J L M J H

K J L M J

                           (2.18) 

where ˆ ˆ ˆ ˆ, , 1, 2 and ,inc inc inc inc
j j j jn n j n n× × × ×= × = × = = × = ×L L K K E E H H . 

 We have four equations in (2.18) with two unknowns J and M. Certain pairs of these 

equations can be used to compute J and M.  For example, first two equations are electric field 

integral equations (EFIE) formulations and last two are magnetic field integral equations 

(MFIE) formulations.  It is well known that both EFIE and MFIE have internal resonance 

problem.  In the other words, both formulations fail at frequencies for which S, when covered 

by a perfect electric conductor and filled with the exterior medium (medium 1), forms a 

resonant cavity.  One solution for the internal resonance problem is to use combine field 

integral equation (CFIE): 

ˆ EFIE (1 ) MFIE
ˆor EFIE (1 ) MFIE

j

j

n

n

α α η

α α η

× + −

+ − ×
 



www.manaraa.com

  

 

13

CFIE has advantages that one equation is for medium 1 and the other is for medium 2, but it 

has non-symmetric form for electric and magnetic currents. 

There is another way to overcome the well known failure of the EFIE and MFIE.  Let 

us look at the linear combinations of two electric field integral equations and two magnetic 

field equations. 

         1 1 2 2 1 2
1( ) ( ) ( ) ( ) (1 )
2

incη αη α α× × × × ×− − − − − − =L J L J K M K M M E              (2.19) 

1 2 1 2
1 2

1 1( ) ( ) ( ) ( ) (1 )
2

incββ β
η η

× × × × ×+ − − + − =K J K J L M L M J H              (2.20) 

where α and β are combination constants.  The combined formulation is the first kind of 

Fredholm integral equation in the form.  Furthermore, it has been proved in [36] that any 

choice andα β  for which *αβ  is real and positive gives a unique solution at all frequencies 

to the formulation.   

After Poggio, Miller, Chang, Harrington, Wu, and Tsai, the combination 1, 1α β= =  

gives the PMCHWT formulation, which also can be derived from matching the boundary 

conditions alternatively: 

1 1 2 2 1 2( ) ( ) ( ) ( ) incη η× × × × ×− − − − =L J L J K M K M E                  (2.21) 

1 2 1 2
1 2

1 1( ) ( ) ( ) ( ) inc

η η
× × × × ×+ − − =K J K J L M L M H                 (2.22) 

The PMCHWT formulation is the first kind of Fredholm integral equation.  In fact, the 

equations are evaluated tangential components directly: 

[ ]1 1 2 2 1 2
ˆ ˆ( ) ( ) ( ) ( ) inct tη η− − − − =L J L J K M K M Ei i              (2.23) 
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                  1 2 1 2
1 2

1 1ˆ ˆ( ) ( ) ( ) ( ) inct t
η η

⎡ ⎤
+ − − =⎢ ⎥

⎣ ⎦
K J K J L M L M Hi i             (2.24) 

 Before discussing other formulations, let us rewrite the operator L and focus on its low 

frequency properties as follows, 

( ) ( ) ( )s c
j j j j

j

iik
k

= +L X L X L X                             (2.25) 

where 

  
( ) ( , ) ( )

1,2
( ) ( , ) ( )

s
j j

S

c
j j

S

G dS
j

G dS

′ ′ ′=

=
′ ′ ′ ′= ∇ ∇ ⋅

∫

∫

L X r r X r

L X r r X r
                 (2.26) 

The first term of ( )s
jL X  is the contribution from the current directly through the scalar 

Green’s function and the second term of ( )c
jL X  is the field generated by the charge.  Then 

the combined equations (2.19) and (2.20) become 

1
1 1 2 2 1 2

1 2

1 2

( ) ( ) ( ) ( )

1( ) ( ) (1 )
2

s s c c

inc

ii εω μ αμ α
ωε ε

α α

× × × ×

× × ×

⎡ ⎤
⎡ ⎤− + − +⎢ ⎥⎣ ⎦

⎣ ⎦

− − − − =

L J L J L J L J

K M K M M E

               (2.27) 

1 2 1 1 2 2

1
1 2

1 2

( ) ( ) ( ) ( )

1( ) ( ) (1 )
2

s s

c c inc

i

i

β ω ε βε

μβ β
ωε μ

× × × ×

× × ×

⎡ ⎤+ − +⎣ ⎦
⎡ ⎤

− + + − =⎢ ⎥
⎣ ⎦

K J K J L M L M

L M L M J H
              (2.28) 

If 2 1 2 1,α ε ε β μ μ= − = − , then the Müller formulation is obtained.  In this 

formulation, the static electric field due to the electric charge and the static magnetic field due 

to the magnetic charge are zero.  So the kernels of Müller formulation is less singular than the 

PMCHWT formulation. 
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The first alternative formulation investigated lets 2121 , εεβμμα −=−= , which also 

makes the kernels of the electric filed due to the electric current and the magnetic field due to 

the magnetic current less singular than the Müller formulation. 

The coefficients used in the second alternative formulation presented 1,1 −=−= βα . 

1 1 2 2 1 2( ) ( ) ( ) ( ) incη η× × × × ×− + − + − =L J L J K M K M M E                    (2.29) 

      1 2 1 2
1 2

1 1( ) ( ) ( ) ( ) inc

η η
× × × × ×+ − + + =K J K J L M L M J H                    (2.30) 

It makes the kernels of the electric field due to the magnetic current and the magnetic field due 

to the electric current less singular than the Müller formulation.  Furthermore, it also makes 

the kernels of the scalar parts of the electric field due to the electric current and the static 

magnetic field due to the magnetic charge less singular if either the background or the 

scattering body is not magnetic material.  In addition, this formulation is attractive because it 

is of simple form and is easily rewritten as the Neumann series for low contrast homogeneous 

bodies. 

However, the surface integral formulations presented in this section, such as PMCHWT 

and Müller formulations, have limitations in computation at very low frequency or quasi-static 

regime, which is called low-frequency breakdown [23].  With the operating frequency 

decreasing, the condition number of MoM matrix will increase as 21/ k  and reach an 

extremely huge number for quasi-static cases.  The low-frequency breakdown problem can be 

described in terms of the natural Helmholtz decomposition of Maxwell’s equations.  As the 

frequency decreases, the electric and magnetic fields are decoupled.  The unknown current 

consists of two components, a curl-free part and a divergence-free part.  As for computational 

EM society, researchers adopted loop-tree and loop-star basis functions to expand the 
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divergence-free mode and curl-free mode separately [23].  In our research, as elaborated in 

Chapter 4, we introduce the Stratton-Chu formulation that treats the divergence-free and 

curl-free terms in different ways and can operate well at static and quasi-static regime. 

2.4  Rao-Wilton-Glisson Basis Function 

Introduced in 1982 the RWG basis function [29] has proven useful in computational 

electromagnetics.  Its structure is similar to a roof-top basis function and its value comes from 

the fact that it eliminates line charges at the basis elements, allowing for a smooth and 

continuous current density across the edge. 

To implement the RWG basis function, the surface is divided into triangular patches.  

The basis function is defined by the interior (non-boundary) edges of the triangular patches.  

The plus and minus designation of the triangles is determined by the choice of a current 

reference direction for the nth edge.  The positive current direction is from the plus triangle, 

across the basis element (edge) into the negative triangle.  The current follows from one node 

to the node not on the same triangle, and the current has tangential components on non-shared 

edges.  The basis function is defined as: 

2

( )
2

0 otherwise

n
n n

n

n
n n n

n

l T
A

l T
A

+ +
+

− −
−

⎧ ∈⎪
⎪
⎪
⎪⎪= ∈⎨
⎪
⎪
⎪
⎪
⎪⎩

ρ r

b r ρ r                            (2.31) 

where ,n n n n
+ + − −= − = −ρ r r ρ r r .  Meanwhile, it is easily to show that 
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21 2

/
( )

/
n n n

n
n n n

l A T
l A T

ρ
ρ ρ

+ +

− −

∂
∇ = =

∂

⎧ ∈
∇ = ⎨

− ∈⎩

ρ

r
b r

r

i

i

                          (2.32) 

which means that each RWG basis has equal but opposite charge on the two triangles and the 

net charge for each RWG basis is zero. 

The RWG basis function has a variety of beneficial characteristics that make it a favorable 

choice when compared to a wire gird modeling approach.  Specifically, it eliminates fictitious 

loop currents and difficulties relating the modeled wire currents to the actual surface currents.  

It also produces better conditioned matrices and more accurate current models at frequencies 

near resonance. 

RWG basis function b(r) is especially well suited to approximately represent surface 

currents.  It eliminates problems associated with line charges along basis elements. The 

current has no component normal to the boundary (excluding the common edge or basis 

element) of the surface formed by nT +  and nT − .  As is illustrated in Figure 2.2, the current 

component normal to the nth edge is constant and continuous across the edge.  Figure 2.3 

shows that the normal component of nρ
±  along edge n is just the height of the triangle nT ±  

with edge n as the base and the height expressed as (2 ) /n nA l± .  The latter factor normalizes 

bn in equation (2.31) such that its flux density normal to edge n is unity, ensuring continuity of 

the current normal to the edge.  With no component normal to the boundary, the current 

component normal to the nth edge is constant and continuous across the edge, which implies 

that all edges of nT +  and nT −  are free of line charges.  The charge density is constant in each 
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triangle and the total charge associated with the triangle pair nT +  and nT −  is zero, with the 

basis functions for the charge in the form of pulse doublets [39]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

( )−+ + c
n

c
n ρρ
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1

 

Figure 2.2.  Plus and minus triangles used in determining the nth basis element. [29] 

Figure 2.3.  Geometry for construction of component of basis function normal to edge. [29] 
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2.5  Projection Error Using RWG Basis 

It is well-known that the MoM is one of the most important methods in CEM because 

of its powerful ability in solving the integration equation of electromagnetic radiation and 

scattering.  Like the numerical dispersion error analysis in finite element method (FEM) and 

finite difference in time domain (FDTD), the MoM error analysis is an important topic in CEM.  

The error analysis of the MoM was performed with the error measure of current, boundary 

condition, and scattering amplitude.  As mentioned by the researchers in [40], the application 

of expansion and testing functions is one of the most important factors contributing to MoM 

error.  In fact, the various basis functions play important roles in MoM.  The application of 

the proper basis functions can facilitate the accurate and convenient modeling of the complex 

electromagnetic problems.  It is interesting to investigate the error in projection of the 

equivalent current of plane wave using various basis functions.  The projection error is similar 

to the error of approximation of the current in the MoM.  For the former, the operator 

enforcing on the approximate current can be regarded as the identity, while for the latter, the 

operator is with a kernel.  The projection error can serve as the reference for the MoM error 

analysis.  The study of the projection error of basis can indirectly demonstrate how the basis 

functions affect the accuracy of MoM. 

In this section, we analyze the projection error related to the RWG basis functions.  

The equivalent vector current by a plane wave in a finite area is expanded by full and half 

RWG basis functions, and the unknown projection coefficients are solved by the Galerkin’s 

method.  The error is calculated for different polarizations, different meshes and mesh 

densities, and different incident angles [41, 42]. 
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2.5.1 Projection Error 

For a plane wave incident from the direction of ( ),inc incθ φ  and polarized in the 

direction of p̂ , the magnetic field is given as  

ˆ
0

ˆˆ
incinc inc ikkH p k e−= × rH i                             (2.33) 

where ˆ ˆ ˆ ˆ ˆˆ cos sin , cos sininc t t
inc inc inc inc inc inck z k k x yθ θ φ φ= + = + , and ˆ ˆˆ ,zz xx yy= + = +r ρ ρ .  The 

equivalent electric current on the plane of 0z =  is found as 

( ) ˆsin
0

ˆˆ ˆˆ
inc

inc tik kinc incn H z p k e θ−= × = × × ρJ H i                    (2.34) 

For the θ -polarization, ˆˆˆ ˆ sin cosinc
inc inc t incp z kθ θ θ= = − + , 

ˆsin
0

ˆ inc
inc tik kinc

tH k e θ−= ρJ i                               (2.35) 

And for the φ -polarization, ˆˆ ˆ ˆsin cosinc inc incp x yφ φ φ= = − + , 

ˆsin
0

ˆcos
inc

inc tik k
inc incH e θθ φ −= ρJ i                          (2.36) 

Obviously, the equivalent vector current of θ -polarization is curl-free and the current 

of φ -polarization is divergence-free. 

The vector currents in equation (2.35) or (2.36) can be expanded by the RWG basis 

functions.  The projected current is denoted as J  and has a form of 

1

N
n nn

a
=

= ∑J Λ                                (2.37) 

where nΛ  is a full or half RWG basis function and na  is the unknown coefficient, which can 

be solved from a linear equation derived by using the Galerkin’s method. 

1
, 1, 2,..., .N

n m n mn
S S

a dS dS m N
=

= =∑ ∫ ∫Λ Λ Λ Ji i                (2.38) 
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The relative error is defined using the 2L  norm [40] as 

                 

2

2

S

S

dS
Err

dS

−
−

= =
∫

∫

J J
J J

J J
                        (2.39) 

The integral is performed over all triangular patches.  To remove the border edge 

effects, S  in the integral above is smaller than the S  in equation (2.38). 

2.5.2 Numerical Results 

 

 

 

 

 

 

The four types of triangular mesh investigated in this work are one-directional, arrow, diamond, 

and hexagonal mesh [43], as shown in Figure 2.4.  In the first three meshes, each square is divided into 

two right-angle isosceles triangles.  The hexagonal mesh consists of equilateral triangles.  For each 

mesh, the shortest distance between nodes is set to a.  Figure 2.5 shows the polar plot of the projection 

error for one-directional mesh as a function of incφ  with the different incident angle incθ  of the plane 

wave.  It is found that the error in the projection of θ -polarization current (curl-free vector) is less 

than that of φ -polarization (divergence-free vector).  This is because that the RWG basis functions 

are curl-free.  Meanwhile, as shown in Figure 2.5, the projection error is anisotropic and varies with 

the direction of propagation.  Also, the severity of the anisotropic behavior relates to the element 

arrangement of the meshes and the polarization of the incident plane wave.  Figure 2.5 also 

Figure 2.4.  Four types of triangular meshes. 

(a) One-directional          (b) Arrow             (c) Diamond          (d) Hexagonal 



www.manaraa.com

  

 

22

demonstrates that the smaller incθ , the smaller the projection error.  From equation (2.35) or (2.36), 

we find that the apparent wavelength on the plane of 0z =  is sin incλ θ , which leads to more 

unknowns per wavelength than the original mesh ( 10aλ = ).  To verify it, we plot the projection 

error normalized by sin incθ  in Figure 2.6.  It shows that the normalized error hardly depends on the 

incident angle incθ ; therefore, in the following figures, incθ  is close to 90 degrees and the error is 

normalized. 

Figure 2.7 shows the projection error as a function of the incident angle incφ  for 4 

different meshes with 10aλ = .  It is observed again that the error in the projection of 

θ -polarization current is less than that of φ -polarization.  For the one-directional, arrow, and 

diamond meshes, the projection errors are different for the φ -polarization; however, they 

agree with each other for the θ -polarization.  The error in the hexagonal mesh is almost 

omni-directional and less than the errors in the other three meshes, where the longest edge is 

2 .a   The shape of the error curves for the φ -polarization is similar to the phase error in the 

finite element method using triangular nodal elements [43].  Additionally, numerical results 

of projection errors have been confirmed by analytical results in [42]. 

In Figure 2.8, the projection error plotted as a function of incφ  with three different 

values of a λ  has the same shape but different magnitude.  The smaller the value of a λ , 

the smaller the error.  Furthermore, it is found that the error is linearly proportional to a λ .  

In addition, the projection error for a sphere represented by 1800 flat triangles is demonstrated 

in Figure 2.9 for both polarizations. 
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Figure 2.5  Projection error for one-directional mesh as a function of incφ  for a/λ = 
10, with four incident angles incθ . Top: φ -polarization; Bottom: θ -polarization.  
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Figure 2.6  Projection error normalized by sin incθ  for one-directional mesh as a 
function of incφ  for a/λ = 10, with four incident angles incθ  and φ -polarization. 
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Figure 2.7  Projection error as a function of incφ  for a/λ = 10, with four different 
meshes. Top: φ -polarization; Bottom: θ -polarization. 
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Figure 2.8  Projection error for the one-directional mesh as a function of incφ , with the different 
values of /a λ  and φ -polarization. 
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Figure 2.9  Projection error for a sphere as a function of incθ , with the different values of average 
edge length. Left: φ -polarization; Right: θ -polarization. 
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CHAPTER 3. FAST MULTIPOLE SOLUTIONS FOR DIFFUSIVE 

SCALAR PROBLEM 

In what follows, we solve the two-dimensional Helmholtz equation with a complex 

wave number for non-trivial boundary geometry and describe the FMM acceleration procedure 

of the BIE method and its features [44, 45]. 

3.1  Diffusion Problem 

The boundary integral equation for the Helmholtz equation 2 2 0u k u∇ + =  can be 

written as  

                   ( , )1 ( )( ) ( , ) ( ) ( )
2

k
k

S

Guu G u dS
n' n'

′′ ∂∂⎡ ⎤′ ′ ′= −⎢ ⎥∂ ∂⎣ ⎦∫
ρ ρρρ ρ ρ ρ ρ            (3.1) 

 

where S is the boundary of the interest domain, , S′∈ρ ρ  are the source and field points, 

respectively, and ( , )kG ′ρ ρ  is the free-space Green’s function for the Helmholtz equation.  

Here, we simply assume that the source point is on a smooth boundary segment, without 

resorting to the more general weakly singular formulation [46]. The Green’s function 

( , )kG ′ρ ρ  in two dimensions is given by 

                      (1)
0( , ) ( | |)

4k
iG H k′ ′= −ρ ρ ρ ρ                         (3.2) 

 

where (1)
0H  is the Hankel function of the first kind of order zero. 
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3.1.1  Dirichlet Boundary Condition 

u  is given and the integral equation (3.1) is solved for u
n'
∂
∂

.  

            ( , )( ) 1( , ) ( ) ( ) ( ) ( )
2

k
k

S S

GuG dS u dS u
n' n'

′′ ∂∂′ ′ ′ ′= +
∂ ∂∫ ∫

ρ ρρρ ρ ρ ρ ρ ρ           (3.3) 

Now, we illustrate a discretization of the integral equation for the Dirichlet boundary 

condition by using the method of moments with the pulse functions as basis functions and 

Dirac delta functions as testing functions.  The boundary S is partitioned into N cells and the 

unknown function u
n'
∂
∂

 is expanded as  

1
( )

'

N

i i
i

u x b
n =

∂
=

∂ ∑ ρ                             (3.4) 

where ( )ib ρ  is the pulse basis function.  Then testing the integral equation by point matching 

leads to 

                         
1

1, 2,...,
N

ji i j
i

A x y j N
=

= =∑                      (3.5) 

jiA  in the left-hand-side (LHS) has a form of 

      (1)
0( , ) ( ) ( ) ( , ) ( ) ( ) ( )

4
i i

ji k j i k j j
S S S

iA G b dS G dS H k dS′ ′ ′ ′ ′ ′ ′= = = −∫ ∫ ∫ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ      (3.6) 

 

The right-hand-side (RHS) can be obtained by evaluating the integral at jρ . 

                    

(1)
0 ( )( , ) 1 1( ) ( ) ( ) ( ) ( ) ( )

2 4 2
jk j

j j j
S S

H kG iy u dS u u dS u
n' n'

′∂ −′∂
′ ′ ′ ′= + = +

∂ ∂∫ ∫
ρ ρρ ρ

ρ ρ ρ ρ ρ ρ   (3.7) 
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3.1.2  Neumann Boundary Condition 

u  is solved from the integral equation for the given u
n'
∂
∂

, 

( , ) 1 ( )( ) ( ) ( ) ( , ) ( )
2

k
k

S S

G uu dS u G dS
n' n'

′ ′∂ ∂′ ′ ′ ′+ =
∂ ∂∫ ∫
ρ ρ ρρ ρ ρ ρ ρ ρ             (3.8) 

Similarly, 

   
(1)
0 ( )( , ) 1 1( ) ( )

2 4 2
i i

jk j
ji ij ij

S S

H kG iA dS dS
n' n'

δ δ
′∂ −′∂

′ ′= + = +
∂ ∂∫ ∫

ρ ρρ ρ
ρ ρ           (3.9)           

And 

(1)
0

( ) ( )( , ) ( ) ( ) ( )
4j k j j

S S

u i uy G dS H k dS
n' n'
′ ′∂ ∂′ ′ ′ ′= = −

∂ ∂∫ ∫
ρ ρρ ρ ρ ρ ρ ρ            (3.10) 

3.2  Fast Multipole Accelerated BIE Method 

The main idea of the fast multipole BIE method is to translate the element-to-element 

interactions to group-to-group interactions by using multipole expansions and translation [22, 

23], where elements have a quad tree structure in two dimensional cases.  First, the elements 

are divided into groups.  Then, addition theorem is used to translate the diffusion field of 

different scattering centers within a group into a single center (aggregation).  Hence, the 

number of scattering centers is reduced.  Similarly, for each group, the field scattered by all 

the other group centers can be first “received” by the group center, and then “redistribute” to 

the elements belonging to the group (disaggregation).  To solve the diffusion problem above 

using the FMM, the key part is the multipole expansion of the Hankel function. Letting jρ  

and iρ  be the field point and source point respectively, as shown in Figure 3.1, we have 
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         ' ' ' 'ji j i j m m m m i jm mm im= − = − + − + − = + −ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ ρ          (3.11)            

where mρ  and 'mρ  are the vectors of the centers of the m-th and m’-th groups, which jρ  

and iρ  are belong to, respectively.  

 

 

 

 

 

 

 

The basic principle behind FMM is to decompose the computation of matrix-vector 

products into two parts: one involving the interaction between nearby sources and the other 

involving those between well separated ones. That is, 

                      near farAX = A X + A X                           (3.12)           

As for Dirichlet boundary condition, the zero order of Hankel function can be 

expressed in the Fourier space by means of the integral representation of the Bessel function 

[23]: 

            
2

(1)
0 '

0

1( ) ( ) ( ) ( )
2ji jm mm m iH k d

π

ρ α β α α α β α
π ′= ∫                  (3.13) 

where               ( ) ( )2(1)
' ( ) mm

P
ip

mm p mm
p P

H k e ϕ α πα α ρ ′− − −
′

=−

= ∑                     (3.14) 

and        cos( )( ) jm jm jmik i
jm e eρ α φβ α −= = k ρi ,   ' 'cos( )( ) m i m i m iik i

m i e eρ α φβ α ′−
′ = = k ρi         (3.15)          

•

•

•

•

jρ

iρ

jiρ

m′ρ

mρ

jmρ

mm′ρm i′ρ

Field points 
Sources 

Figure 3.1.  A diagram of 2-level FMM algorithm. 
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Furthermore, the integral can be replaced with Q-point summation: 

           (1)
0

1

1( ) ( ) ( ) ( )
Q

ji jm q q m i q
q

H k
Q

ρ β α α α β α′
=

= ∑                       (3.16)           

When using an iterative method to solve the matrix equations, a matrix-vector 

multiplication is to be computed in each of the iterations.  As a consequence, a matrix vector 

multiplication involving A can be written as: 

     

2

1 0

1

8

( ) ( ) ( )
4

m m m m

m m m m

N

ji i ji i jm mm m i i i m
i m B i G m B i G

Q

ji i jm q mm q m i q i i m
m B i G q m B i G

iA x A x d x j G

iA x x j G
Q

π

α β α β
π

β α α α β α

′ ′

′ ′

′ ′
′ ′= ∈ ∈ ∉ ∈

′ ′
′ ′∈ ∈ = ∉ ∈

= + Δ ∈

= + Δ ∈

∑ ∑ ∑ ∑ ∑∫

∑ ∑ ∑ ∑ ∑
       (3.17)           

where Gm denotes all elements in the m-th group, and Bm denotes all nearby groups of the m-th 

group (including itself), and iΔ  denotes the i-th node segmental length.  The first term in the 

RHS of equation (3.17) is the contribution from the nearby groups, and the second term is the 

far interaction calculated by FMM.  

As for Neumann boundary condition, we use the fact i i
x y

i

n n
n x y
∂ ∂ ∂

= +
∂ ∂ ∂

, where i
xn  and 

i
yn  are the x and y components of the unit normal in , we can show that 

    

(1)
0 (1)

0

2

'
0

2

'
0

( )
( )

1 ( ) ( ) ( )
2

1 ( ) ( )[ ( cos sin )] ( )
2

ji i
i ji

i

jm mm m i
i

i i
jm mm x y m i

H k
H k

n

d
n

d ik n n

π

π

ρ
ρ

α β α α α β α
π

α β α α α α α β α
π

′

′

∂
= ∇

∂

∂
=

∂

= − +

∫

∫

n i

     (3.18) 

 

Similarly, the matrix vector multiplication involving A can be written as: 
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2

1 0

1

[ ( cos sin )]
8

( ) ( ) ( cos sin ) ( )
4

m m m m

m m m m

N
i i

ji i ji i jm mm x y m i i i m
i m B i G m B i G

Q
i i

ji i jm q mm q x q y q m i q i i m
m B i G q m B i G

iA x A x d ik n n x j G

kA x n n x j G
Q

π

α β α α α β
π

β α α α α α β α

′ ′

′ ′

′ ′
′ ′= ∈ ∈ ∉ ∈

′ ′
′ ′∈ ∈ = ∉ ∈

= + − + Δ ∈

= + + Δ ∈

∑ ∑ ∑ ∑ ∑∫

∑ ∑ ∑ ∑ ∑
             

(3.19) 

3.3  Numerical Tests 

In the first stage of tests, we proceed to solve the 2D Helmholtz equation using the 

conventional BIE method with/without the far interactions for both Dirichlet and Neumann 

boundary conditions and for a complex wave number k of (1 ) /i δ+ .  We study the boundary 

shape with a side of one unit as shown in Figure 3.2, which also shows the distribution of 

nodes along the boundary.  The numbering of boundary nodes starts from the left bottom 

corner and then goes counterclockwise.  

 

 

 

 

 

 

 

 

 

 

104 

68 

1 20 

40 84 

50 

60 
62 

Figure 3.2.  Illustration of the boundary shape of a notched square. 



www.manaraa.com

  

 

33

For the comparisons shown in Figures 3.3 and 3.4, we test the conventional BIE 

method solution against the exact solution of the 2D Helmholtz equation with the complex k 

with the skin depth δ  equal to 1. The exact solution has a form of 

 expsin
2 2

ik ku x y⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

=                         (3.20) 

It is shown that the numerical solutions agree well with the exact solutions for both Dirichlet 

and Neumann boundary conditions, which is a good preparation for the implementation of 

FMM. 

In Figure 3.5, we plot the elapsed CPU time on a personal computer for solving the 

diffusion problem using the conventional BIE method, both direct solvers and iterative solvers 

(GMRES and BICG) are used.  It is observed that for solving the matrix equation, it requires 

O(N3) operations using direct solvers, and O(N2) operations per iteration if iterative solvers are 

used, which is the benchmark of our future work. 

Dividing all interactions into near and far interactions is one of key steps in 

FMM-accelerated BIE method.  We study the error in the BIE solution without the far 

interactions, comparing the BIE solution including both near and far interactions.  We draw a 

square to enclose the notched shape properly and then divide it into 10 by 10 groups.  In the 

test, the skin depth δ  is equal to 0.25, and we discard the far interactions due to the Hankel 

function with the complex wave number in the left hand side.  Here, we set two parameters, 

IFAR and /d δ , and use either of them to control the near and far interactions.  IFAR is 

defined as the minimum number of groups between two separate groups which are considered 

as far neighbors (interactions) in the FMM-accelerated BIE method and d is defined as the 

maximum Euclidian distance between the centers of two separate groups considered as near  
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Figure 3.3.  Comparison of the conventional BIE method solution with the exact solution for the Dirichlet 
boundary condition for the notched shape shown in Figure 3.2. Top: Real part of the solution; Bottom: 
Imaginary part of the solution.  
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Figure 3.4.  Same as Figure 3.3 except testing for the Neumann boundary condition. 

50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Node Number

u 
(R

ea
l P

ar
t)

Conventional BIE
Exact Solution

50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

Node Number

u 
(I

m
ag

in
ar

y 
P

ar
t)

Conventional BIE
Exact Solution



www.manaraa.com

  

 

36

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5.  Comparison of the elapsed CPU time for solving this diffusion problem using the conventional 
BIE method for direct solver and iterative solvers (GMRES, BICG). Top: Dirichlet boundary condition; 
Bottom: Neumann boundary condition. 
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Figure 3.6.  Relative RMS error in the BIE solution without the far interactions, comparing the BIE solution 
including both near and far interactions for Dirichlet and Neumann boundary conditions.  IFAR is defined as 
the minimum number of groups between two separate groups which are considered as far neighbors 
(interactions).  
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Figure 3.7.  Same as Figure 3.6 except the near interaction solution is controlled by the relative distance 
to skin depth ( /d δ ). 
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Figure 3.8.  Absolute values of the BIE solutions without the far interactions controlled by /d δ , 
comparing the conventional BIE solution including both near and far interactions. Top: Dirichlet boundary 
condition; Bottom: Neumann boundary condition. 
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neighbors and then /d δ  is the relative distance to skin depth.   

In addition, the RMS relative error is defined using the 2L norm [40] as 

 

               
2

A BA B

2
B

B

ErrorRMS

−−
= = ∑

∑
P PP P

P P
                      (3.21)             

where AP and BP are the complex numerical solutions when using the BIE method without far 

interactions and the conventional BIE method, respectively. 

In Figures 3.6 and 3.7, we plot the relative RMS error in the BIE solution without the 

far interactions, comparing with the BIE solution including both near and far interactions for 

both Dirichlet and Neumann boundary conditions, and for two different parameters, IFAR 

and /d δ , respectively.  It is observed that the accuracy increases dramatically when we keep 

more and more near interactions and throw away less and less far interactions.  Additionally, 

as shown in Figure 3.8, the BIE solutions without the far interactions for both boundary 

conditions appropriately agree with the conventional BIE solution when d exceeds the triple 

skin depth. 

In the second stage of tests, we work with the two-dimensional Helmholtz equation 

using the conventional BIE method and the two-level FMM BIE method for both Dirichlet and 

Neumann boundary conditions and for a complex wave number k of (1 ) /i δ+ , where δ is the 

skin depth.  In the numerical test, our geometry of interest is a notched square with an area of 

4 4δ δ× , as also shown in Figure 3.2.  The numbering of boundary nodes starts from the left 

bottom corner and then goes counterclockwise. The total numbers of nodes is 208, 416, 832, 

1664, 3328, 6656, 8320 and 10400, respectively.  A square is drawn to enclose the notched 
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shape properly and then divided into m by m groups (m increasing by a factor of 2 ).  

Moreover, IFAR, a controlling parameter, which is defined as the minimum number of groups 

between two separate groups considered as far interactions in the FMM-accelerated BIE 

method, is set to 1.  The numerical tests are performed on a PC (Dual Core CPU, 4.0 GB of 

RAM) running Linux.  Stopping criteria for iterative solver GMRES is set to 10-5 and restart 

number for it is 10.  Meanwhile, the relative RMS error is defined by equation (3.21), in 

which AP  and BP are the complex numerical solutions when using the FMM BIE method and 

the conventional BIE method, respectively. 

For the comparisons shown in Tables 3.1 and 3.2, we test the FMM BIE method 

solution against the conventional BIE method solution of the two-dimensional Helmholtz 

equation for Dirichlet and Neumann boundary conditions with node number N increasing and 

then list the elapsed CPU time in seconds and RMS relative errors.  As for the conventional 

BIE method, the total CPU time includes two parts: matrix filling and solving.  Since the 

conventional BIE method generates a dense matrix, it requires O(N2) operations to compute 

left hand side (LHS) matrix and another O(N3) operations to solve the equations using direct 

solver LUD for both boundary conditions, as shown in Table 3.1.  For a fair comparison, the 

CPU time for solving the full matrix equations using iterative solver GMRES is also recorded, 

which requires O(N2) operations per iteration.  As for the FMM BIE method, the total CPU 

time includes three parts: pre-calculation, matrix filling, and solving using iterative solver 

GMRES.  In contrast to the conventional BIE method, the two-level FMM BIE method 

reduces the operations per iteration and memory requirement to O(N3/2), while the solution is 

still in the same order accuracy, as shown in Table 3.2.  Then, in Figure 3.9, we plot the CPU 

time per iteration using FMM BIE method for solving the diffusion problem with iterative 
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solver GMRES against the CPU time using the conventional BIE method with direct solver 

LUD and iterative solver GMRES for Dirichlet boundary condition.  After curve fitting of last 

six points, it is observed that for solving our full matrix equations, it requires O(N3.05) 

operations using direct solver LUD, and O(N2.08) operations per iteration if iterative solver 

GMRES is used; however, it only requires O(N1.43) operations per iteration using fast multiple 

method with GMRES to solve the matrix equations.  Moreover, it is a similar case for 

Neumann boundary condition. 

Last but not least, it is demonstrated in Figure 3.10 that the conventional BIE method 

requires O(N2.01) operations to compute left hand side (LHS) matrix for this two-dimensional 

diffusion problem while the two-level FMM BIE method reduces operation complexity to 

O(N1.17) for Dirichlet boundary condition by applying asymptotic curve fitting. 

 

 

 

 

 

 

 

 

 

 

 

 



www.manaraa.com

  

 

42

Table 3.1.  Comparison of elapsed CPU time for solving the diffusion problem using the conventional BIE 
method and FMM BIE method for both Dirichlet and Neumann boundary conditions.  

Node Number 

208 416 832 1664 3328 6656 8320 10400CPU Time 
(sec) 

m=6 m=8 m=12 m=16 m=24 m=32 m=35 m=40 

Dirichlet Boundary Condition 
Conv BIE: 

Matrix 
Filling 

0.22 0.76 2.37 9.51 38.67 154.96 241.98 374.50

Conv BIE: 
LUD 0.01 0.10 0.51 4.02 32.28 269.39 538.04 1064.09

Conv BIE: 
Full Matrix 

GMRES 
0.01 0.03 0.11 0.55 2.72 12.67 24.84 41.45 

CPU time 
per iteration 0.00040 0.00094 0.00275 0.01079 0.04387 0.17597 0.30293 0.49345

 
FMM BIE: 

Pre-Calculati
on 

0.04 0.09 0.22 0.43 0.98 1.81 2.21 2.24 

FMM BIE: 
Matrix 
Filling 

0.03 0.05 0.09 0.24 0.61 1.74 2.48 3.36 

FMM BIE: 
GMRES 0.01 0.02 0.03 0.06 0.19 0.58 0.88 1.41 

CPU time 
per iteration 0.00040 0.00063 0.00073 0.00120 0.00311 0.00806 0.01128 0.01720 

Neumann Boundary Condition 

Conv BIE: 
Matrix-Fill 0.25 0.82 2.70 10.80 43.77 175.19 274.71 430.55 

Conv BIE: 
LUD 0.01 0.08 0.49 3.81 30.46 258.08 507.10 991.14 

Conv BIE: 
Full Matrix 

GMRES 
0.00 0.01 0.02 0.12 0.47 1.88 3.73 7.05 

CPU time 
per iteration 0.00000 0.00100 0.00250 0.01200 0.04700 0.18800 0.33909 0.64091

 
FMM BIE: 

Pre-Calculati
on 

0.04 0.09 0.22 0.43 0.99 1.82 2.14 2.34 

FMM BIE: 
Matrix-Fill 0.03 0.05 0.10 0.27 0.67 1.94 2.78 3.76 

FMM BIE: 
GMRES 0.01 0.01 0.01 0.03 0.05 0.09 0.12 0.18 

CPU time 
per iteration 0.00111 0.00111 0.00125 0.00300 0.00500 0.00900 0.01200 0.01800 
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Table 3.2.  Comparison of relative RMS errors for solving the diffusion problem using the conventional BIE 
method and FMM BIE method for both Dirichlet and Neumann boundary conditions.  

Node Number 
208 416 832 1664 3328 6656 8320 10400 

Boundary 
Condition 

m=6 m=8 m=12 m=16 m=24 m=32 m=35 m=40 
Dirichlet 0.0128 0.0105 0.0097 0.0119 0.0128 0.0130 0.0130 0.0127 
Neumann 0.0080 0.0055 0.0050 0.0049 0.0046 0.0044 0.0042 0.0041 

         

                   

 

 

 

 

                     

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9.  Comparison of the CPU time using the conventional BIE method with direct solver LUD or 
iterative solver GMRES and using FMM BIE method with GMRES to solve the two-dimensional diffusion 
problem for Dirichlet boundary condition. 
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Figure 3.10.  Comparison of the total elapsed CPU time using the conventional BIE method and the FMM BIE 
method with iterative solver GMRES for Dirichlet boundary condition and the CPU time of pre-calculation and 
matrix filling parts in these two methods. 
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CHAPTER 4.  BOUNDARY ELEMENT METHOD FOR EDDY 

CURRENT NONDESTRUCTIVE EVALUATION 

In what follows, we introduce a boundary integral equation (BIE) method for the eddy 

current NDE in three dimensions and demonstrate an implementation of the Stratton-Chu 

formulation [28] for the conductive medium.  The problem is formulated by the BIE and 

discretized into matrix equations by the method of moments (MoM) [27] or the boundary 

element method (BEM). 

4.1 Stratton-Chu Formulation 

4.1.1  General Form 

We start with Maxwell’s equations, which include both electric and magnetic currents. 

This will help us identify the equivalent surface currents and derive the field equivalence 

principle. 

Taking the curls of both sides of Ampere’s and Faraday’s laws and using the vector 

identity 2( ) ( )∇× ∇× = ∇ ∇ −∇E E Ei , we obtain the following inhomogeneous Helmholtz 

equations [47] which are duals of each other: 

2 2 1
mk iωμ ρ

ε
∇ + = − + ∇ +∇×E E J J                           (4.1) 

           2 2 1
m mk iωε ρ

μ
∇ + = − + ∇ −∇×H H J J                         (4.2) 

We recall that the Green’s function for the Helmholtz equation is: 

2 2 ( , ), ( , )
4

ikeG k G Gδ
π

′−

′ ′ ′∇ + = − =
′−

r r

r r r r
r r

                    (4.3) 
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where ′∇  is the gradient with respect to ′r .  Applying Green’s second identity, we obtain: 

2 2 ˆ,
V S S

GG G dV G dS
n n n

∞+

∂ ∂ ∂⎡ ⎤′ ′ ′ ′ ′⎡ ⎤∇ − ∇ = − − = ∇⎣ ⎦ ⎢ ⎥′ ′ ′∂ ∂ ∂⎣ ⎦∫ ∫
EE E E ni             (4.4) 

where G and E stand for ( )G ′r,r and ( )′E r and the integration is over ′r .  The quantity 

n
∂
′∂
is the directional derivative along n̂ .  The negative sign in the right-hand side arises from 

using a unit vector n̂ that is pointing into the volume V , as shown in Figure 4.1. 

 The integral over the infinite surface is taken to be zero.  This may be justified more 

rigorously by assuming that E and H behave like radiation fields with asymptotic form 

const.r →E and ˆ 0r η− × →E H r .  Thus, dropping the S∞ term, and adding and 

subtracting 2k GE in the left-hand side, we obtain: 

2 2 2 2( ) ( )
V S

GG k G k G dV G dS
n n
∂ ∂⎡ ⎤′ ′ ′ ′⎡ ⎤∇ + − ∇ + = − −⎣ ⎦ ⎢ ⎥′ ′∂ ∂⎣ ⎦∫ ∫
EE E E E            (4.5) 

Using equation (4.3), the second term on the left hand side may be integrated to give ( )E r : 

Region 1 
ε1, μ1 
E1, H1 

V 

S 

Region 2 
ε2, μ2  
E2, H2 

1n̂  

n̂

2n̂
 

J, M 

Figure 4.1.  Field geometry inside and outside a closed surface S, where the outside (Region 1) is free 
space and the inside (Region 2) is a conductive medium. 
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2 2( )( ) ( ) ( ) ( )
V V

G k G dV dVδ′ ′ ′ ′ ′ ′− ∇ + = − =∫ ∫E r E r r r E r                  (4.6) 

where we assume that r lies in V . This integral is zero if r lies outside V  because then 

′r can never be equal to r .  For arbitrary r , we may write: 

( ), if
( ) ( )

0, ifV

r V
dV

r V
δ

∈⎧′ ′ ′− = ⎨ ∉⎩
∫

E r
E r r r                         (4.7) 

Now we can solve equation (4.5) for ( )E r .  In a similar fashion, or, performing a duality 

transformation on the expression for ( )E r , we also obtain the corresponding magnetic field 

( )H r . Using equation (4.1) and (4.2), we have: 

1( )
V S

Gi G G G dV G dS
n n

ωμ ρ
ε

∂ ∂⎡ ⎤ ⎡ ⎤′ ′ ′ ′= − ∇ − ∇ × + −⎢ ⎥ ⎢ ⎥′ ′∂ ∂⎣ ⎦ ⎣ ⎦∫ ∫m
EE r J J E           (4.8) 

1( ) m m
V S

Gi G G G dV G dS
n n

ωε ρ
μ

⎡ ⎤ ∂ ∂⎡ ⎤′ ′ ′ ′= − ∇ − ∇ × + −⎢ ⎥ ⎢ ⎥′ ′∂ ∂⎣ ⎦⎣ ⎦
∫ ∫

HH r J J H         (4.9) 

 Because of the presence of the particular surface term, we will refer to these as the 

Kirchhoff diffraction formulas.  Equation (4.8) and (4.9) can be transformed into the so-called 

Stratton-Chu formulas 

[ ]

[ ]

( )

ˆ ˆ ˆ( ) ( ) ( )

ˆ ˆ ˆ( ) ( ) ( ) ( )

m
V

S

inc

S

i G G G dV

i G G G dS

i G G G dS

ρωμ
ε

ωμ

ωμ

⎡ ⎤′ ′ ′= + ∇ − ×∇⎢ ⎥⎣ ⎦

′ ′ ′+ × + ∇ + × ×∇

′ ′ ′= + × + ∇ + × ×∇

∫

∫

∫

E r J J

n H n E n E

E r n H n E n E

i

i

           (4.10) 
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[ ]

[ ]

( )

ˆ ˆ ˆ( ) ( ) ( )

ˆ ˆ ˆ( ) ( ) ( ) ( )

m
m

V

S

inc

S

i G G G dV

i G G G dS

i G G G dS

ρωε
μ

ωε

ωε

⎡ ⎤′ ′ ′= + ∇ + ×∇⎢ ⎥
⎣ ⎦

′ ′ ′+ − × + ∇ + × ×∇

′ ′ ′= + − × + ∇ + × ×∇

∫

∫

∫

H r J J

n E n H n H

H r n E n H n H

i

i

         (4.11) 

4.1.2  Low Frequency and High Conductivity Approximation 

We start with the general version of the Stratton-Chu formulas that are also shown in 

equation (4.10) and (4.11), which explicitly contains the normal components of the surface 

fields. 

[ ]ˆ ˆ ˆ( ) ( ) ( , )( ( )) ( ( )) ( , ) ( ( )) ( , )inc

S

i G G G dSωμ ′ ′ ′ ′ ′ ′ ′ ′ ′= + × + ∇ + × ×∇∫E r E r r r n H r n E r r r n E r r ri       (4.12) 

[ ]ˆ ˆ ˆ( ) ( ) ( , )( ( )) ( ( )) ( , ) ( ( )) ( , )inc

S

i G G G dSωε ′ ′ ′ ′ ′ ′ ′ ′ ′= + − × + ∇ + × ×∇∫H r H r r r n E r n H r r r n H r r ri    (4.13) 

where S is the boundary of the interest domain, , S′∈r r  are the source and field points, 

respectively, and 2 2( , ) (4 ) , , 1, 2jik
j j j jG e k jπ ω μ ε′−′ ′= − = =r rr r r r , n̂  is the unit normal 

direction pointing towards solution domain.  These formulas provide stable solutions at low 

frequencies as they remain valid even in the static limit. 

Then, formulas can be derived for the region 1 of free space and the region 2 with high 

conductivity, as shown in Figure 4.1, when the angular frequencyω  approaches to zero.  

For the region 1, since ˆ ˆ=1n n  and 1 1( , ) ( , )G G′ ′ ′∇ = −∇r r r r , Equation (4.13) can be 

written as: 

1 1 1
1

1 ˆ ˆ( ) ( ) ( , )( ( )) ( , ) ( ( ))inc

S

G G dS
μ

⎡ ⎤
′ ′ ′ ′ ′≈ + − ∇ +∇ × ×⎢ ⎥

⎣ ⎦
∫H r H r r r n B r r r n H ri            (4.14)  
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For the region 2, since 2ˆ ˆ= −n n  and 2 2( , ) ( , )G G′ ′ ′∇ = −∇r r r r , Equations (4.12) and (4.13) 

can be written as: 

[ ]

[ ]

2 2 2 2

2 2 2

ˆ ˆ ˆ( ) ( , )( ( )) ( , ))( ( )) ( ( , )) ( ( ))

ˆ ˆ( , )( ( )) ( , ) ( ( ))
S

S

i G G G dS

i G G dS

ωμ

ωμ

′ ′ ′ ′ ′ ′ ′= − × +∇ + −∇ × ×

′ ′ ′ ′ ′≈ − × +∇ × ×

∫

∫

2E r r r n H r r r n E r r r n E r

r r n H r r r n E r

i
     (4.15) 

2 2 2 2
2

1ˆ ˆ ˆ( ) ( , )( ( )) ( , )( ( )) ( , ) ( ( ))
S

i G G G dSωε
μ

⎡ ⎤
′ ′ ′ ′ ′ ′ ′= × + ∇ −∇ × ×⎢ ⎥

⎣ ⎦
∫2H r r r n E r r r n B r r r n H ri    (4.16) 

where 2 0 2r i iε ε ε σ ω σ ω= + ≈  and 2 1 1 2ˆ ˆ ( ) 1ε ε= <<n E n Ei i , because of high conductivity 

and low frequency.  The approximation also means that in the normal range of frequencies of 

eddy current testing, displacement currents in metal test pieces are negligible compared with 

conduction currents. 

At the interface between region 1 and region 2, 1 2ˆ ˆ ˆ ˆμ μ= ⇔ =1 2 1 2n B n B n H n Hi i i i .  If the 

region 1 is defined as free space, the Green function can be simplified as a static case: 

2
0 0 0

1( , ) (4 ) (4 ) 1 (4 )i k i ikG e eωμ σ π π π′ ′+ − −′ ′ ′ ′= − = − ≈ −r r r rr r r r r r r r          (4.17) 

4.1.3  Integral Equation Normalization 

To make the equations more compact, we introduce equivalent surface currents 

ˆ( ) ( )S = ×J r n H r , ˆ( ) ( )S = ×M r E r n , with 1 1 1( ) ( ) ( )η μ ε= =H r H r H r .  Additionally, 

Equations (4.14) and (4.16) are multiplied by 1 1 1η μ ε=  to balance the MoM matrix; 

therefore, the three chosen Stratton-Chu equations can be written as: 

1 1 1 1 1
1 1

1 ˆ( ) ( ) ( , )( ( )) ( , ) ( )inc
S

S

G G dSη η
μ ε

⎡ ⎤
′ ′ ′ ′ ′≈ + − ∇ +∇ ×⎢ ⎥

⎢ ⎥⎣ ⎦
∫H r H r r r n B r r r J ri            (4.18) 
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2 2
2 2

1

( ) ( , )( ( )) ( , ) ( )S S
S

ki G G dSη
η

⎡ ⎤
′ ′ ′ ′ ′≈ − −∇ ×⎢ ⎥

⎣ ⎦
∫2E r r r J r r r M r                     (4.19) 

1 2 1
1 2 2 2

1 2

ˆ( ) ( , ) ( ) ( , )( ( )) ( , ) ( )S S
S

ki G G G dSε ηη
ε μ

⎡ ⎤
′ ′ ′ ′ ′ ′ ′= − + ∇ −∇ ×⎢ ⎥

⎣ ⎦
∫2H r r r M r r r n B r r r J ri     (4.20) 

Letting the observation pointr approach surface S and then taking the cross product of 

equation (4.18) and (4.19) and the dot product of equation (4.20) with n̂ yields:          

1 1 1
1 ˆ ˆ ˆ( ) ( ) ( ) ( )
2

inc
S n SB η+ × − × ≈ ×J r n R n K J n H r                         (4.21) 

2
1 2 2

1

1 ˆ ˆ( ) ( ) ( ) 0
2 S S Sik μ

μ
− × + × ≈M r n L J n K M                         (4.22) 

2 2 2
1 2 2 2

1 1 1

1 ˆ ˆ ˆ( ) ( ) ( ) 0
2 n S S nB ik Bε μ μ

ε μ μ
+ + − =n L M n K J n Ri i i                   (4.23) 

where nB is defined as 1 1ˆ ( )nB μ ε= n B ri  and the operators L , K , and R are defined as 

follows:                                                                                 

( ) ( , ) ( )j j
S

G dS′ ′ ′⎡ ⎤= ⎣ ⎦∫L X r r X r                                    (4.24) 

. .( ) ( , ) ( )P Vj j
S

G dS′ ′ ′= ∇ ×∫K X r r X r                                (4.25) 

. . . .ˆ( ) ( , )( ( )) ( , ) ( )P V P Vj j j n
S S

G dS G X dS′ ′ ′ ′ ′ ′ ′= ∇ = ∇∫ ∫R X r r n X r r r ri         (4.26) 

4.2 MoM Implementation 

Firstly, using RWG basis of ( )nΛ r , which is curl-free and divergence-conforming, the 

induced currents are expanded as: 

1

( ) ( )
eN

S n n
n

a
=

=∑J r Λ r , 
1

( ) ( )
eN

S n n
n

c
=

= ∑M r Λ r                 (4.27) 
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where Ne is the total edge number.  The structure of RWG basis function has been discussed 

in section 2.4 and is similar to a roof-top basis function and its value comes from the fact that it 

eliminates line charges at edges.  Using pulse basis ( )nb r  for triangular mesh nT , the 

normal component of magnetic field is expanded as: 

                 1 1 1 1
1

ˆ ( ) ( )
pN

n n n n
n

B B d bμ ε μ ε
=

= = =∑n B r ri               (4.28) 

where 
1

( )
0 otherwise

n
n

T
b

⎧ ∈⎪= ⎨
⎪⎩

r
r and Np is the total patch number. 

Secondly, using Galerkin’s method, equations (4.21) and (4.22) can be tested 

with ( )mΛ r and equation (4.23) tested with ( )mb r .  Then, discretized matrix equations are 

formed by means of numerical integration rule, 
1

1 ( ) ( )
gN

g g
gT

dS f W f
T =

=∑∫ r r , in which Ng is the 

total number of integral points in the patch. 

Finally, the discretized MoM matrix of the Stratton-Chu formulas reads 

1 1

2
1 2 2

1

2 2 2
2 1 2 2

1 1 1

1 0
2

1 0 0
2

0
1
2

I

n n n

ik

ik

μ
μ

μ ε μ
μ ε μ

× ×

× ×

⎡ ⎤
⎢ − ⎥
⎢ ⎥ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥− + =⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥

−⎢ ⎥
⎣ ⎦

T K R
a V

L T K c
d

K L D R

 

If further rescaling the discretized MoM matrix with a setting of 1/ k′ ≡c c , it gives 
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1 1

2
2 2

1

22
2 2 2 2

1

1 0
2

1 0 0
2

0
1
2

I

n n n

i

ik

μ
μ

μ
μ

× ×

× ×

⎡ ⎤
⎢ − ⎥
⎢ ⎥ ⎡ ⎤⎡ ⎤
⎢ ⎥ ⎢ ⎥⎢ ⎥′− + =⎢ ⎥ ⎢ ⎥⎢ ⎥
⎢ ⎥ ⎢ ⎥⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥

−⎢ ⎥
⎣ ⎦

T K R
a V

L T K c
d

K L D R

 

 

where the subscript 1,2j =  stand for medium 1 or medium 2, and the superscript ×  and 

n denote the cross or dot products with normal component n̂ .   

Furthermore, the expanding terms in the MoM matrix are detailed in the form as follows: 

0 0

( ) ( ) ( ) ( )
2 2

( , ) ( , )
m m m

m m
mn m n m n m n

m mS S S

l lT dS dS dS
S S

I m n I m n

+ −

+ −
+ −

+ −

= = +

= +

∫ ∫ ∫Λ r Λ r ρ Λ r ρ Λ ri i i
 

with 

/ 3 / 3 /
1

0 / 3 / 4 /
1

/

( )( ) ( ),
4

( , ) ( )( ) ( ),
4

0

g

g

N
m n

g m g m m g m n g m n
gn

N
m n

g m g m m g m n g m n
gn

g m n

l l W S S
S

l lI m n W S S
S

S

+ + + + +
+

=

+ + + + + −
−

=

+

⎧
− − ∈⎪

⎪
⎪⎪= − − + ∈⎨
⎪
⎪

∉⎪
⎪⎩

∑

∑

r r r r r

r r r r r

r

i

i  

4 / / 3 /
1

0 4 / / 4 /
1

/

( )( ) ( ),
4

( , ) ( )( ) ( ),
4

0

g

g

N
m n

g m m g m g m n g m n
gn

N
m n

g m m g m g m n g m n
gn

g m n

l l W S S
S

l lI m n W S S
S

S

− − − − +
+

=

− − − − − −
−

=

−

⎧
− − ∈⎪

⎪
⎪⎪= − − + ∈⎨
⎪
⎪

∉⎪
⎪⎩

∑

∑

r r r r r

r r r r r

r

i

i  

( ) ( )
m m

mn m n mn mn m
T T

D dS b b dS Tδ δ= = =∫ ∫r r  
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[ ]

2 2

/ / / /
1 1 1 1

ˆ( ) ( , ) ( )

ˆ( ) ( ) ( ) ( , ) ( )

m n

g g

j mn m j n
S S

N N
p p q q

g m m m g m g n n j g m g n n g n
p g q g

K dS G dS

W S S W S S G

×

= = = =

′ ′ ′= × ∇ ×

′ ′⎡ ⎤= × ∇ ×⎣ ⎦

∫ ∫

∑∑ ∑∑

Λ r n r r Λ r

Λ r n r r Λ r

i

i
 

2

/ / / /
1 1 1

ˆ( ) ( , ) ( )

ˆ( ) ( ) ( , ) ( )

m n

g g

n
j mn m j n

T S

N N
q q

m g m g n n j g m g n n g n g m m
g q g

K dS b G dS

T W T W S S G T
= = =

′ ′ ′= ∇ ×

′ ′= ∇ × ∈

∫ ∫

∑ ∑∑

r n r r Λ r

n r r Λ r r

i

i
 

[ ]

2 2

/ / / /
1 1 1 1

ˆ( ) ( , ) ( )

ˆ( ) ( ) ( ) ( , ) ( )

m n

g g

j mn m j n
S S

N N
p p q q

g m m m g m g n n j g m g n n g n
p g q g

L dS G dS

W S S W S S G

×

= = = =

′ ′ ′= ×

′ ′⎡ ⎤= ×⎣ ⎦

∫ ∫

∑∑ ∑∑

Λ r n r r Λ r

Λ r n r r Λ r

i

i
 

2

/ / / /
1 1 1

ˆ( ) ( , ) ( )

ˆ( ) ( ) ( , ) ( )

m n

g g

n
jmn m j n

T S

N N
q q

m g m g n n j g m g n n g n g m m
g q g

L dS b G dS

T W T W S S G T
= = =

′ ′ ′=

′ ′= ∈

∫ ∫

∑ ∑∑

r n r r Λ r

n r r Λ r r

i

i
 

[ ]

2

/ / / /
1 1 1

ˆ( ) ( , ) ( )

ˆ( ) ( ) ( ) ( , )

m n

g g

j mn m j n
S T

N N
p p

g m m m g m n g n j g m g n g n n
p g g

R dS G b dS

W S S T W T G T

×

= = =

′ ′ ′= × ∇

′ ′⎡ ⎤= × ∇ ∈⎣ ⎦

∫ ∫

∑∑ ∑

Λ r n r r r

Λ r n r r r

i

i
 

/ / / /
1 1

ˆ( ) ( , ) ( )

ˆ( ) ( ) ( , ) ,

m n

g g

n
j mn m j n

T T

N N

m g m n g n j g m g n g m m g n n
g g

R dS b G b dS

T W T T W T G T T
= =

′ ′ ′= ∇

′ ′= ∇ ∈ ∈

∫ ∫

∑ ∑

r n r r r

n r r r r

i

i
 

{ }

1

2

1
1 1

ˆ( ) ( )

ˆ( ) ( )
2

m

g

I inc
m m

S

N
p incm

g m m g
p g

V dS

l W S

η

η ±

= =

⎡ ⎤= ×⎣ ⎦

⎡ ⎤= ×⎣ ⎦

∫

∑∑

Λ r n H r

ρ n H r

i

i
 

To calculate the expanding terms containing the Green’s function jG  or jG∇  in the 

MoM matrix, that is, j mnK × , n
j mnK , jmnL× , n

jmnL , j mnR× , and n
j mnR , we need to apply 
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singularity or near singularity extractions, if the field point is right on or close to the source 

patch.  The singular integration procedure is elaborated by Graglia [48], and we use the same 

procedure to remove singularity in the expanding terms. 
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CHAPTER 5.  NUBERICAL STUDY FOR THREE DIMENSIONAL 

EDDY CURRENT NONDESTRUCTIVE EVALUATION 

In what follows, we present numerical results for the eddy current NDE in three 

dimensions after the implementation of the Stratton-Chu formulation for the conductive 

medium [49].  These numerical results include near field distribution and impedance change.  

Additionally, we introduce Auld’s impedance formulas for the calculation of impedance 

variation. 

5.1 Near Field Distribution 

The traditional approach to probe The three-dimensional Stratton-Chu formulas for the 

conductive medium are solved numerically by means of the BIE method.  Firstly, as an 

illustration of the method, a conducting sphere model is chosen as an example of the eddy 

current problem.  The sphere with a radius of 1 meter is represented by 3200 flat triangles and 

4800 edges, and the average edge length is around 0.097 meter.  The scattered electric and 

magnetic fields are calculated using the following equations: 

1 '
2

1( ) ω '
4 '

ik

s s s
S

i ek iε ds
πωε

−

⎡ ⎤= ⋅∇ ∇ + + ×∇⎣ ⎦ −∫∫
r r

E J J M
r r

               (5.1) 

'
2

1( ) ω '
4 '

iik

s s s
S

i ek i ds
πω

μ
μ

−

⎡ ⎤= ⋅∇ ∇ + − ×∇⎣ ⎦ −∫∫
r r

H M M J
r r

             (5.2) 

 For a plane wave incident from the direction of ( 0, 0)i iθ ϕ= =  and polarized in the 

horizontal or vertical direction [41], the computation results of scattered electric fields are 

shown in Figure 5.1, as the observation surface is 0.1 meter outside the sphere surface.  In this 
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case, the working frequency is 3 MHz and the conductivity of the sphere is 75 10×  S/m.  The 

computation results agree well with the Mie series solution [50] at plane wave incidence. 

 

 

 

 

 

 

 

 

 

 

 

 

 

To simulate air core coils in the probe field modeling, a small electric current loop is put at 

the z-axis, with the coordinate of (0.0, 0.0, 1.2 meter) and its loop surface parallel to the x-y 

plane.  The electric current loop can be treated as a magnetic dipole with a moment of 

0M SI= :                                    

2
0 0 0mI l i M i a Iωμ π ωμ= − = −  

The computation results of scattered electric and magnetic fields are shown in Figure 

5.2, as the observation surface is 0.1 meter outside the sphere surface, with the frequency of 3 

Figure 5.1.  Comparison of scattered electric fields calculated by BIE method and those from Mie series 
solution for a conducting sphere with plane wave incidence. H-pol: horizontal polarization; V-pol: vertical 
polarization. 
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MHz and the sphere conductivity of 35 10×  S/m.  The solution of scattered electric and 

magnetic fields reasonably agree with the Mie series solution with localized magnetic dipole 

incidence. 

Next, a cube model with the conductivity of 35 10×  S/m is set as another example of 

the eddy current problem.  The cube with a side length of 1 meter is represented by 1200 flat 

triangles and 1800 edges, and the average edge length is around 0.11 meter.  The center of the 

cube is at the origin (0.0, 0.0, 0.0) and the magnetic dipole is put above the top surface of the 

cube at 0.7z = meter plane, as shown in Figure 5.3. 

Figure 5.4 shows the snapshots of total time-harmonic electric field pattern at a 2 meter 

by 2 meter square in 0.6z =  meter plane, as the magnetic dipole at a excitation frequency of 

3 MHz moves towards a corner of the cube, as shown in Figure 5.3, which stands for a top 

surface scanning for the cube with a lift-off distance of 0.2 meter.  We present the vector plot 

of the in-phase components (denoted as 0t = ) and the quadrature components ( 4t T= , where 

T  is the period of the incident wave) separately.  Each arrow in the figure is drawn from the 

point at which the electric field is evaluated, with length proportional to the magnitude of the 

vector at that point.  These computation results have reasonable physical meanings for the 

primary eddy current field produced by sinusoidal excitation of a small induction coil in the 

cube model. 
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Figure 5.2.  Comparison of scattered electric and magnetic fields calculated by BIE method and those from 
Mie series solution for a conducting sphere with localized magnetic dipole incidence.  
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Figure 5.3.  A conducting cube model and its top surface scanning diagram. 
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Figure 5.4.  Snapshots of total time-harmonic electric field pattern at a 2 meter by 2 meter square in 
z=0.6 meter plane, as the magnetic dipole moves towards a corner of the cube.  The labels 0t =  and 

4t T=  stand for the in-phase and quadrature components, respectively. 
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5.2 Impedance Change 

5.2.1  Auld’s Impedance Formulas 

The traditional approach to probe modeling used an equivalent circuit model to provide a 

description of probe performance qualitatively [1].  Later, Burrows developed a quantitative 

equivalent circuit model, for defects that consist of small ellipsoidal inclusions and voids [6].  

His approach was to generate the probe modeling based on the concepts of microwave circuit 

theory, specifically, use of the electromagnetic field reciprocity relation to establish a circuit 

reciprocity relation for two-port probes.  After that, researchers continued working on the 

quantitative probe modeling, generalized Burrows’s work and defined the electromagnetic 

boundary value problems that must be solved to evaluate impedance change ZΔ .  In 1999, 

Auld and Moulder summarized all the advancements in EC modeling by then and presented a 

comprehensive review in [51], which includes the derivation of impedance formulas as 

follows: 

In surface integral form, 

[ ]0 2

1 ˆ
S

Z Z Z dS
I

′ ′Δ = − = × − ×∫ n E H E Hi                   (5.3) 

In volume integral form, 

( ) ( )0 2

1

V

Z Z Z dV i
I

σ ω μ− ′ ′Δ = − = Δ + Δ⎡ ⎤⎣ ⎦∫ E E H Hi i            (5.4) 

where Z is the impedance of the coil in the presence of the flawed conductor and Z0 is the coil 

impedance in the presence of a similar but unflawed conductor.  As shown in Figure 5.5, E 

and H are the probe fields excited in the unflawed conductor by the probe terminal current I, 

and ′E  and ′H  are the probe fields excited in the presence of a defect by the same probe 
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terminal current;  V is the volume of defect and S is any surface enclosing the defect; n̂  is an 

inward pointing unit vector normal to the surface S; σΔ  and μΔ  are the difference of 

conductivity and permeability between the flawed and the unflawed states of the test piece.  

The surface integral form of Auld’s Formula can be conveniently transformed into volume 

integral form by using the divergence theorem and Maxwell’s equations [51].   

 

 

 

 

 

 

 

In our research, we focus on the surface integral equations for homogenous conductive 

medium with a closed surface in eddy current NDE.  The integral surface S is any surface 

enclosing the unflawed conductor or flawed conductor.  The impedance change in the 

presence of conductor (unflawed or flawed) is directly calculated corresponding to the isolated 

probe coil.  The impedance variation due to a defect is the difference between the impedance 

changes of unflawed and flawed cases.  As a result, we simplify the Auld’s formula in surface 

integral form, if only equivalent surface currents sJ  and sM  exist in the conductor, 

2 2

2

1 1ˆ

1 ˆ

inc inc inc inc

S V

inc inc
s s

S

Z dS dV
I I

dS
I

⎡ ⎤ ⎡ ⎤Δ = × − × = −⎣ ⎦ ⎣ ⎦

⎡ ⎤= −⎣ ⎦

∫ ∫∫∫

∫

n E H E H H M E J

n H M E J

i i i

i i i
        (5.5) 

I 
E' & H' 

V' 

n̂

I V

E & H 

Figure 5.5.  Geometry of general absolute probe interacted with unflawed and flawed conductors. 
Left: unflawed conductor; Right: flawed conductor. 
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where incE and incM  are the incident probe fields and E and H are the probe fields excited in 

the unflawed or flawed conductors.  Also, V is the volume of the testing conductor and S is 

any surface enclosing the conductor. 

5.2.2  Coil above a Sphere 

In this section, we investigate impedance change in a single-turn coil situated above a 

conducting sphere numerically, which has been compared to an analytical solution [52], to 

verify our numerical codes based on the three-dimensional Stratton-Chu formulas.  Firstly, as 

an illustration, a conducting sphere model is also chosen as an example of the eddy current 

problem.  We consider a single-turn circular coil of radius cr  whose axis goes through the 

centre of a sphere of radius 1ρ  and conductivity σ , where h  stands for the lift-off distance 

and cρ  stands for the distance between origin of the sphere and the edge of the coil, as shown 

in Figure 5.6.  The sphere is represented numerically by 3200 flat triangles and 4800 edges. 

 

 

 

 

 

 

 

 

 

 Figure 5.6.  Cross-section for a single-turn coil of a radius of cr  above a sphere of radius 1ρ . 
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As presented by Antimirov et al. in [52], the change in impedance of this case has an 

analytical form: 

2 2
0 1( / )sin ( )ind

c cZ r Zπωμ ρ ϕ= , 

where  

( )

[ ]

2 1
2(1)1

1

1 1/2 1

1 1/2 1 1 1/2 1

1 cos
( 1)

(2 1) ( ) 1
( 1) 0.5 ( ) ( ) ( )

n

n c
n c

n

n n

Z i P
n n

n J k
n J k k J k

ρ ϕ
ρ

μ ρ
μ ρ ρ ρ

−
∞

=

+

+ +

⎛ ⎞
⎡ ⎤= − ⎜ ⎟ ⎣ ⎦+ ⎝ ⎠

⎧ ⎫+⎪ ⎪−⎨ ⎬′+ − +⎪ ⎪⎩ ⎭

∑
                (5.6) 

And it is known that 0 1
1 ik iωσμ μ
δ
+

= =  and 0 1
2 c

c
rrβ ωσμ μ

δ
= = . 
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Figure 5.7.  Comparison of theoretical and numerical results in impedance change against β  for 

three values of 1 / crρ  with / 0.1ch r =  and 1 1μ = . 
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The normalized impedance change, Z R iX= − , is computed analytically for different 

values of β , 1 / crρ , / ch r .  Meanwhile, the numerical results are computed using our codes 

for the same setting, with incident electric and magnetic fields by a single-turn coil represented 

in [53].   

Then, the two groups of results are presented together in Figures 5.7 and 5.8 for 

comparison.  The points on the curves in the figures correspond to 1,...,10β = , where the 

lowest point on each curve corresponds to 10β = .  It is easily concluded that the numerical 

results agree well with analytical results and our numerical codes based on the 

three-dimensional Stratton-Chu formulas succeed in this case. 
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Figure 5.8.  Comparison of theoretical and numerical results in impedance change against β  for 

three values of / ch r  with 1 / 0.9crρ =  and 1 1μ = . 
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5.2.3  Coil above a Wedge 

Included in this section is the numerical output of impedance change for a finite 

cross-section coil interacted with a right-angled conductive wedge, which is compared to 

analytical results and experimental results in [54, 55].  Before that, in what follows, the 

incident electric and magnetic fields from a coil with finite cross-section is elaborated in 

details. 

 

 

 

 

 

 

 

 

 

 

 

For an n-turn coil with rectangular cross-section and parameters as shown in Figure 5.9, 

the electric field has a form [54] 

coil cross
section

( , ) ( , , , ) ( , , , )
o

i

r s l
n

s s s s s s
r s

z z a h dS z a h da dhρ ρ ρ
+

= =∫ ∫ ∫E E E              (5.7) 

Figure 5.9.  Cross-section diagram through the axis of a circular, air-cored, eddy-current coil, 
positioned horizontally. 
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where ( , , , )s sz a hρE  is the electric field produced by the equivalent current density sJ  in the 

coil under quasi-static condition and the subscript ‘ s ’ refers to this as being the source current 

density. sa  and sh  are, then, continuous variables in the radial and vertical directions, 

respectively.  

As an example of applying the process of linear superposition consider the electric field in 

the region above the coil.  This corresponds to region 1 in the case of the circular current loop 

treated in [54].  Taking the result for 1 ( , )E zφ ρ  in the case of the δ -function coil, removing 

the term related to conductive half plane and inserting that into equation (5.7) gives 
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          (5.8) 

 

Assuming that the current in each loop has the same phase and amplitude and the 

current density is [ ]/ ( )s o iI nI l r r= − .  Collecting together terms in equation (5.8) that depend 

on sa  and sh  and then integrating over these variables, gives 
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where ( ) 1, ( )
o

i

r

i o
r

r r xJ x dx
κ

κ

χ κ κ = ∫ , which can be expressed in terms of standard functions.  For 

computation purposes, ( )1 2,a aχ  can be expressed in terms of Struve and Bessel functions 

[56].  More specifically, it is defined that 
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where 0,1iJ = and 0,1i=Η are the zeroth- and first-order Bessel and Struve functions. 

Then, the magnetic field for an n-turn coil with rectangular cross-section can be easily 

derived in the following lines. 

Since iωμ∇× =E H  and 
( )1ˆ ˆ ˆ

E E
E z

z
φ φ

φ

ρ
φ ρ

ρ ρ
∂ ∂

∇× = − +
∂ ∂

, it is derived that 

0

0

( )1
z

EiH
z

EiH

φ
ρ

φ

ωμ

ρ
ωμ ρ ρ

∂
=

∂

∂−
=

∂

. 

 



www.manaraa.com

  

 

69
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            (5.11) 

After implementation of localized source from finite cross-section coil, we move to test 

our numerical codes based on the three-dimensional Stratton-Chu formulas.  Firstly, we 

calculate the impedance change due to a half-space conductor that is truncated as a top surface 



www.manaraa.com

  

 

70

of conductive block B1 or B2 regarding to coil C5 or C27 testing.  The numerical results are 

obtained based on the coil parameters in Table 5.1 and conductive block parameters in Table 

5.2, and then compared to one experiment and two theoretical results, as shown in Table 5.3.  

The nominal edge size of mesh for coil C5 operated at 850 Hz is 3.21 mm, and that for coil 

C27 operated at 20 kHz is 2.14 mm.  The numerical results agree with experimental and 

theoretical results well, and the slight difference comes from the half-plane truncation and 

mesh density. 

Secondly, we calculate the impedance change in the case of a quarter-space.  The 

experimental data for coil impedance variations in the presence of a conductive quarter consists 

of two measurement sets provided by Burke & Ibrahim [55] and the theoretical data provided 

by Bowler [54].  The first set is for coil C5 operated at 850 Hz and the second is for coil C27 

operated at 20 kHz.  As for the first set, the meshes generated for block B1 surface include 

total 6 facets and coil scan line moves right above the top facet, as demonstrated in Figure 5.10.  

Meanwhile, in order to reduce computation complexity and increase mesh density, we generate 

meshes for quarter-space surface of blocks represented by 2 facets, as also shown in Figure 

5.10.  Additionally, the block dimension is represented by a, b, and c as length, width, and 

depth, respectively.  Impedance change measurements are recorded as a function of position 

with 2 mm intervals, while the coils moving across the edges of thick aluminum alloy blocks.  

In addition, the coil position referred in Figures 5.11-5.15 is the distance between the coil’s 

axis position and the edge, and the value is zero if the coil center is directly above the edge.  

Resistance and reactance changes due to the block edge effect have been plotted in Figure 5.11, 

where curves have been made showing cubic or rectangular blocks with different edge sizes 

and mesh density.  At the operating frequency of 850 Hz, the skin depth 1δ  is equal to 3.418 
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mm.  With the nominal edge size approaching to the skin depth, the signal variation becomes 

larger.  It is observed that signal variation from the edge of rectangular block (a=70 mm, 

b=70 mm, c=40 mm) is still a good approximation for the first measurement set at 850 Hz, 

since the truncation is beyond 10 1δ  from the coil position.  To simplify the block geometry 

and achieve higher mesh density, we calculate the resistance and reactance changes due to 

quarter-space edge effect of rectangular block represented by 2 facets and compare the results 

with those of 6-facet rectangular block model, as shown in Figure 5.12.  It is demonstrated 

that the 2-facet geometry model of the rectangular block is a good approximation for the total 

block surface, since the truncation of two quarter-space surface facets is large enough that the 

induced electric and magnetic currents on the other four facets are negligible.   Then, 

comparison of resistance and reactance variation with coil axis position relative to the edge of 

the conductor B1 for coil C5 excited at 850 Hz has been shown in Figure 5.13, where 

numerical results are calculated using 2-facet quarter-space mesh with a truncation area (a=70 

mm, b=70 mm, c=40 mm) and the nominal edge size of 2.85 mm.  As for the second set, coil 

C27 is operated at 20 kHz and the skin depth 2δ  is equal to 0.762 mm.  Similarly, 2-facet 

meshes for quarter-space surface of blocks haven been generated as geometry inputs to 

impedance change calculation.  Resistance and reactance changes due to the block edge effect 

have been plotted in Figure 5.14, where curves have been made showing cubic or rectangular 

blocks with different edge sizes and mesh density.  Then, numerical results of resistance and 

reactance variation of edge effect of the conductor B2 for coil C27 excited at 850 Hz have been 

compared with experimental and theoretical results, as shown in Figure 5.15, where numerical 

results are calculated using 2-facet quarter-space mesh with a truncation area (a=50 mm, b=50 

mm, c=30 mm) and the nominal edge size of 1.90 mm.  In general, the comparisons cover 
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cases where the skin depth is both small (0.762 mm at 20 kHz) and relatively large (3.418 mm 

at 850 Hz).  The agreement between numerical results and those from theory and experiment 

is quite good in both cases, which demonstrates the capability that our numerical codes can 

simulate impedance change for arbitrary shape conductive objects interacted with coils in NDE 

applications. 

 

 

Table 5.1.  Coil parameters. [54] 
parameter Coil C5 Coil C27 

 ir (mm) 9.33 7.04 

or (mm) 18.04 12.4 
s  (mm) 3.32 3.43 
l (mm) 10.05 5.04 

n  1910 556 
 
 
 
 
Table 5.2.  Conductive block parameters. [54] 

parameter Block B1 Block B2 
ρ (μΩ cm) 3.92 4.58 

thickness (mm) 140 65 
 
 
 
 
Table 5.3.  Coil impedance change (Ω ) due to half-space. 

 Coil C5 at 850 Hz Coil C27 at 20 kHz 
Experiment 22.00 - j70.5 12.650 - j125.1 

Dodd & Deeds [4] 22.20 - j70.49 12.801 - j125.288 
Bowler [54] 22.25 - j70.45 12.801 - j125.329 

Numerical result 22.095 – j70.012 12.705 – j124.380 
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Figure 5.10.  Illustration of block surface meshed by triangular patches and scanned by coil. Top: 
6-facet mesh; Bottom: 2-facet mesh. 

Scan Line 

Scan Line 

a 

b 

c 

a b 

c 



www.manaraa.com

  

 

74

−30 −20 −10 0 10 20 30
0

5

10

15

20

25

coil position (mm)

ΔR
 (

Ω
)

 

 

Cube−140mm, d′=11.4mm
Cube−70mm, d′=11.4mm
Cube−70mm, d′=5.7mm
Cube−40mm, d′=5.7mm
Rec−70×70×40mm, d′=5.7mm

 
 
 

−30 −20 −10 0 10 20 30
−70

−60

−50

−40

−30

−20

−10

0

coil position (mm)

ΔX
 (

Ω
)

 

 

Cube−140mm, d′=11.4mm
Cube−70mm, d′=11.4mm
Cube−70mm, d′=5.7mm
Cube−40mm, d′=5.7mm
Rec−70×70×40mm, d′=5.7mm

 
 
 
 
 
 

Figure 5.11.  Comparison of numerical results of impedance change with coil axis position relative 
to the edge of the conductor B1 for coil C5 excited at 850 Hz using 6-facet meshes with different 
block sizes and mesh density, where d’ is the nominal edge size of mesh.  Top: resistance variation; 
Bottom: reactance variation. 
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Figure 5.12.  Comparison of numerical results of impedance change with coil axis position relative to 
the edge of the conductor B1 for coil C5 excited at 850 Hz using 6-facet and 2-facet meshes of a 
rectangular block (a=70 mm, b=70 mm, c=40 mm) with different mesh density, where d’ is the nominal 
edge size of mesh. Top: resistance variation; Bottom: reactance variation. 
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Figure 5.13.  Comparison of impedance change with coil axis position relative to the edge of the 
conductor B1 for coil C5 excited at 850 Hz, where numerical results are calculated using 2-facet 
quarter-space mesh with a truncation area (a=70 mm, b=70 mm, c=40 mm) and the nominal edge size of 
2.85 mm. Top: resistance variation; Bottom: reactance variation. 
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 Figure 5.14.  Comparison of impedance change with coil axis position relative to the edge of the 
conductor B2 for coil C27 excited at 20 kHz using 2-facet meshes with different block sizes and mesh 
density. Top: resistance variation; Bottom: reactance variation. 



www.manaraa.com

  

 

78

−30 −20 −10 0 10 20 30
0

2

4

6

8

10

12

14

coil position (mm)

ΔR
 (

Ω
)

 

 

experiment
theory
numerical

 

 
 

−30 −20 −10 0 10 20 30
−140

−120

−100

−80

−60

−40

−20

0

coil position (mm)

ΔX
 (

Ω
)

 

 

experiment
theory
numerical

 

 

 

Figure 5.15.  Comparison of impedance change with coil axis position relative to the edge of the conductor 
B2 for coil C27 excited at 20 kHz, where numerical results are calculated using 2-facet quarter-space mesh 
with a truncation area (a=50 mm, b=50 mm, c=30 mm) and the nominal edge size of 1.90 mm. Top: 
resistance variation; Bottom: reactance variation. 
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5.2.4  Coil above a Rectangular Slot in a Thick Plate 

In this section, we calculate impedance change for a cylindrical coil due to a 

rectangular surface slot in a conductive thick plate, and the numerical results have been 

compared to the benchmark experimental measurements made by Burke [57].  The incident 

electric and magnetic fields from a coil with finite cross-section are calculated in the same way 

as that in the previous section. 

After implementation of localized source from finite cross-section coil, we move to 

calculate the impedance change using our numerical codes based on the three-dimensional 

Stratton-Chu formulas.  The two cases for the calculation of impedance change are the same 

test specimen interacted with two coils of operating frequencies at 900 Hz and 7 kHz, 

respectively, and the cases have the common feature of being based on practical eddy-current 

testing techniques, and of utilizing simple geometries.  The experimental data for coil 

impedance variations consists of two measurement sets provided in [57], and the experimental 

arrangement is shown schematically in Figure 5.16.  Here, a circular air-cored coil is scanned, 

parallel to the x-axis, along the length of a rectangular slot in an aluminum alloy plate.  The 

first set is for a smaller coil A operated at 900 Hz and the second is for a larger coil B operated 

at 7 kHz.  The resistance and reactance changes are measured as a function of coil-center 

position.  The parameters of experiments, which include the coil parameters, the test 

specimen and the defect parameters, are listed in Table 5.4 and Table 5.5 for the two 

measurements respectively.  The skin depth at 900 Hz is around 3.04 mm, while the skin 

depth at 7 kHz is reduced to 1.09 mm, which makes this problem differ from the first by 

nearing the thin-skin limit [58].  In the thin-skin regime, the skin depth is substantially smaller 

than the depth and length of the crack.  It is estimated that accurate predictions can be made 



www.manaraa.com

  

 

80

with the restricted boundary conditions provided the crack depth and length are greater than 

approximately three skin depths. 

To generate the geometry mesh, we truncate the top surface of the aluminum alloy plate 

into a square with a side of 12 20 ia δ+  ( 1i =  for the first set; 2i =  for the second set), as 

shown in Figure 5.17.  Then, the truncation square and the within slot have been meshed into 

3200 flat triangles and 4800 edges, and the nominal edge size of mesh in the first set is 2.25 

mm and that in the second set is 1.65 mm.  Meanwhile, the truncation square has also been 

meshed independently for calculating impedance change for the case that a cylindrical coil 

interacts with a conductive thick plate, as a reference to impedance variation due to the slot, 

which is similar to the impedance change calculation due to a half-space conductor in section 

5.2.3.  Moreover, impedance change measurements are recorded as a function of position with 

0.5 mm interval in the first measurement set and 1 mm in the second, while the coils moving 

right above the rectangular slot in the thick aluminum alloy plane.  In addition, the coil 

position referred to in Figures 5.18-5.19 is the distance between the coil’s axis position and the 

center of the slot in x-axis, and the value is zero if the coil center is directly above the center of 

the slot.  The comparisons cover cases where the skin depth is both small (1.09 mm at 7 kHz) 

and relatively large (3.04 mm at 900 Hz).  As shown in Figures 5.18-5.19, reactance 

variations are dominant in impedance change in both measurements and the coil positions of 

the peak in the reactance variation curves provide an indication of the coil radius since the 

diameters of coil A and coil B are somewhat larger than the crack length of 12.60 mm.  

Specifically, at the coil position of zero, the coil axis passes through the center of the slot and, 

because the mean diameter of the coil is greater that the slot length, the eddy current circulates 

around the defect without interacting strongly.  With the coil scanning through the slot, the 
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greatest interaction is observed when the coil is displaced from the center by roughly one mean 

coil radius.  Moreover, the impedance change is symmetrical about coil position of zero, and 

a complete plot, including negative values of coil position, shows two peaks separated by a 

distance approximately equal to the mean coil diameter.  The agreement between numerical 

results and those from experiment is fairly good in both cases, which provide more evidence 

that our numerical codes can practically simulate impedance change for arbitrary shape 

conductive objects with surface defects interacted with coils in NDE applications.   

 
 
 
 
Table 5.4.  Coil parameters. [58] 

parameter Coil A Coil B 

 Inner radius 2a (mm) 6.15 9.34 

Outer radius 1a (mm) 12.4 18.4 

Lift-off l (mm) 0.88 2.03 
Length b  (mm) 6.15 9.0 

Number of turns n  3790 408 
Operating Frequency (Hz) 900 7000 

 
 
 
 
Table 5.5.  Test specimen parameters. [58] 

parameter Plate with a rectangular slot 
Conductivityσ (S/m) 3.06×107 

Thickness (mm) 12.22 
Slot Length 2c (mm) 12.60 
Slot Depth h (mm) 5.00 
Slot Width w (mm) 0.28 
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Figure 5.16.  Schematic configuration for the measurement of impedance change due to a surface 
breaking slot [58]. 
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Figure 5.17.  Geometry model of coil above a rectangular slot in a thick plate. The top surface of the 
plate is truncated into a square. 
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 Figure 5.18.  Comparison of impedance change with coil axis position relative to the center of the 
rectangular slot for coil A excited at 900 Hz. Top: resistance variation; Bottom: reactance variation. 
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 Figure 5.19.  Comparison of impedance change with coil axis position relative to the center of the 
rectangular slot for coil B excited at 7 kHz. Top: resistance variation; Bottom: reactance variation. 
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CHAPTER 6.  SUMMERY AND FUTURE WORK 

In this dissertation, we introduce the FMM acceleration procedure of the BIE method, 

which is a promising technique, but yet to be applied to real-world three-dimensional 

eddy-current problems.  As a prototype problem, we choose a two-dimensional Helmholtz 

equation with a complex wave number for a domain of a non-trivial boundary.  We have 

verified explicitly that the conventional BIE method requires O(N2) operations to compute the 

system of equations and another O(N3) operations to solve the system using direct solvers or 

another O(N2) operations using iterative solvers, with N being the number of unknowns;  in 

contrast, the BIE method accelerated by the two-level FMM can reduce the operations and 

memory requirement to O(N3/2), while keeping the same order of accuracy. 

Furthermore, we demonstrate a boundary integral equation method for modeling the 

eddy current inspection in three dimensions.  The problem is formulated by the BIE and 

discretized into matrix equations by MoM or BEM.  In the implementation of the 

Stratton-Chu formula for the conductive medium, the induced electric and magnetic surface 

currents are expanded in terms of RWG vector basis function, while the normal component of 

magnetic field is expanded in terms of the pulse basis function.  Also, the low frequency 

approximation is applied in the external medium.  Computational tests are presented to 

demonstrate the accuracy and capability of the three-dimensional BIE method with a complex 

wave number for both sphere and cube models described by a number of triangular patches for 

the simulation of eddy current inspection processes.  The agreement between numerical 

results and those from theory and/or experiments is good in both cases of a single-turn coil 

above a sphere and a finite cross-section above a wedge or a rectangular slot in a thick plate, 
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which also give us confidence that our numerical codes can successfully simulate impedance 

change for arbitrary shape conductive objects interacted with coils in NDE application. 

As for the follow-up work of this study, it is suggested that one would apply the BIE 

method to solve more practical eddy current NDE problems in three dimensions, such as 

adding dense crack mesh in the numerical model, etc.   Also, it is worth continuing work on 

the three-dimensional BIE method accelerated by the FMM, which enhances the capability and 

adaptability of solving large-scale electromagnetic wave propagation and eddy-current 

problems. 
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